Boiler Fuel Solar

Thermal Oil Boiler IDM600Mcal

MANUAL INTSRUKSI PENGOPRASIAN TOH
KAPASITAS 200 Mcal/h

PT. INDIRA DWI MITRA 2019

DAFTAR ISI

KATA PENGANTAR

Bab 1 PENGERTIAN THERMAL OIL HEATER Bab 2 PENGOPRASIAN DAN PEMELIHARAAN
Bab 3 PROSEDUR KESELAMATAN SAAT PENGOPERASIAN DAN PEMELIHARAAN

Bab 4 PENCEGAHAN KEBAKARAN, PEMADAMAN KEBAKARAN DAN PERALATANNYA

LAMPIRAN

Instrument part user manual

KATA PENGANTAR

Alhamdulillaah, dengan mengucap puji dan syukur ke hadirat Allah Subhanahu Wata’aalaa, instruction manual ini telah disusun guna memudahkan pengguna unit Thermal Oil Heater (TOH) PT Indira Dwi Mitra.
Kami berharap instruction manual book ini bisa menjadi pedoman bagi customer, terutama Operator yang akan menjalankan unit TOH ini. Pada setiap bab dijelaskan mengenai penjelasan- penjelasan unit, cara pengoprasian, pemeliharaan prosedur keselamatan dan lain-lain.
Besar harapan kami, Operator dapat menjalankan tugasnya sesuai prosedur keselamatan, karena “keselamatan kerja” harus menjadi prioritas untuk mencapai target yang diharapkan dari unit TOH.
Semoga bermanfaat.

BAB 1
PENGERTIAN THERMAL OIL HEATER

UMUM

1. Thermal Oil Heater adalah jenis mesin transfer pemanas dengan mengunakan Thermal Oil Fluid (Oli mineral) sebagai media penghantar panas dan dapat bekerja sampai temperatur 320 °C atau lebih, sesuai spesifikasi Oli nya. Berbeda dengan steam yang mencapai tekanan 70 bar untuk pemakaian temperatur 285 °C, Thermal Oil Heater bekerja hanya pada tekanan pompa sirkulasinya saja sehingga lebih aman dan alat-alat yang membutuhkan pemanasan tidak perlu dirancang dengan konstruksi yang khusus.
2. Umur kerja Thermal Oil Fluid (pada system TOH yang baik) umumnya lebih dari 5 tahun dan tidak diperlukan penambahan selama tidak ada kebocoran pada pipa-pipa atau peralatan pemanas, dan tidak memerlukan pembersihan karena bagian dalam coil pemanas tidak berkerak seperti pada Steam Boiler.

KEUNGGULAN THERMAL OIL HEATER DIBANDINGKAN BOILER STEAM

3. Beberapa hal yang bisa dijadikan pertimbangan kenapa harus memilih thermal oil heater.

a. Bekerja pada temperatur tinggi dengan tekanan rendah

b. Temperatur control yang presisi

c. Tidak memerlukan perawatan Oli

d. Tidak ada heat losses dari condensate dan blowdown seperti pada steam boiler

e. Tidak ada korosi pada bagian dalam pipa TOH

f. Biaya pemeliharaan rendah

g. Operasional Full Automatic dan mudah sehingga tidak memerlukan operator khusus

DESAIN

4. Thermal Oil bisa disuplai dalam konstruksi Vertikal guna menghemat ruangan dan efisien karena mempergunakan Integrated burner. Beberapa jenis burner di desain bisa menggunakan udara panas dengan menggunakan “Air Pre Heater”, yaitu dengan memanfaatkan gas buang sisa pembakaran sehingga pembakaran bahan bakar (cair) lebih sempurna. Atau Thermal Oil di desain Horizontal, tergantung kebutuhan pengguna.
“Heating Coil” terbuat dari Seamless Boiler Tube yang dirol secara continuous. Setiap sambungan las dikerjakan dengan teliti, dan “Pressure Test” dengan media gas sampai 1,5 kali tekanan operasi. Oli mengalir didalam coil dengan kecepatan tertentu untuk menghindarkan overheating, yang dapat mengakibatkan kerusakan Oli akibat terbentuknya arang.
5. Gas panas hasil pembakaran memanaskan aliran thermal oil diruang bakar sebagai panas radiasi dan selanjutnya memanaskan oil di coil konveksi melalui sela-sela antar coil dengan kecepatan yang tertentu dalam 3 pass dengan arah berlawanan dengan arah aliran thermal oil. Turbulensi yang dihasilkan oleh gas selama melewati coil menghasilkan meningkatnya effisiensi Heater dan efek pembersihan coil dari jelaga yang mungkin menempel pada bagian luar coil.

INSTRUMENT THERMAL OIL

6. Setiap unit dilengkapi dengan aksesoris, termasuk didalamnya adalah:

a. Heating Coil/unit TOH lengkap dengan cover

b. Circulation Pump

c. Expansion Tank

d. Collecting Tank

e. Valve-Valve

f. Strainer

g. Differential Pressure Switch atau Pressure Gauge with Switch

h. Control Panel

“PERHATIAN”

7. Thermal oil heater bisa saja menjadi penyebab kecelakaan serius dan hal itu pernah terjadi. Maka pengguna mesin ini harus menjalankannya sesuai procedure. Operator yang menjalankan harus sudah mengikuti pelatihan operator TOH dan mengikuti petunjuk pengoprasian sesuai user manual yang telah diberikan oleh pembuat mesin.

PENJELASAN SISTEM
8. Thermal oil heater adalah mesin penghasil panas dengan media Oli yang dipanaskan dalam pipa coil. Umumnya thermal oil memiliki instrument yang terdiri dari burner/mesin pembakar bahan bakar, pompa sirkulasi, tangki ekspansi, tangki penyimpanan oli, pipa-pipa dan panel kontrol.
9. Coil TOH di desain berbentuk spiral, dipanaskan oleh burner berbahan bakar gas, solar/light oil, heavy oil/residu atau bahan bakar lain yang bertujuan untuk menaikan suhu Oli itu sendiri.
10. Oli yang telah bersirkulasi dipanaskan sampai temperatur 300 0C atau sesuai kebutuhan. Oli dipanaskan dalam pipa coil, kemudian ditransfer ke peralatan lain yang membutuhkan panas tersebut. Setela panas diambil/diserap, maka oli dikembalikan ke heater dengan dorongan pompa sirkulasi.
11. Expansion tank diperlukan dalam system untuk mengantisipasi peluapan ketika oli dipanaskan. Tangki penyimpanan oli (collecting tank) juga dirangkaian dalam system untuk tempat penyimpanan oli, ketika keadaan darurat atau ketika dilakukan pemeliharaan.

KETENTUAN OLI YANG DISARANKAN

12. Persyaratan utama Oli untuk transfer panas yang ideal adalah:

a. Titik didih tinggi
b. Stabilitas panas yang baik
c. Titik beku rendah
d. Sifat perpindahan panas yang baik
e. Tidak mudah teroksidasi
f. Tidak beracun dan tidak berbau

13. Contoh sifat-sifat Oli TOH adalah:

a. Density/kepadatan pada 2000C 760 Kg/m³
b. Spesific Heat 2.4 kJ/kgK
c. Flash Point 1800C
d. Ignition Point/Titik Bakar 3700C
e. Boiling point/Titik didih 3300C
f. Pour point/titik tuang -180C
g. Koefisien Thermal expansion 0.00076/ 0C

FLUE GAS TEMPERATURE LIMITER

14. Temperature limiter dipasang untuk menghindari panas berlebih pada gas buang yang menggunakan bahan bakar liquid atau gas sebagai bahan bakar. Instrument ini juga berfungsi sebagai pendeteksi kebocoran Oli dalam ruang bakar. Jika hal itu terjadi, maka cairan akan terbakar dan meninggalkan jelaga yang terus menempel dan menumpuk, akhirnya akan menyebabkan panas yang berlebih pada gas buang.

FLAME DETECTOR

15. Ketika terjadi gagal api pada burner dengan bahan bakar cair atau gas, flame detector akan menangkap sinyal bahwa tidak adanya pembakaran di dalam ruang bakar. Maka flame detector akan memerintahkan burner untuk memutuskan suplai bahan bakar, sehingga tidak terjadi penumpukan bahan bakar di ruang bakar.
16. Fungsi dari flame detector harus di periksa setiap hari dan dicatat. Tarik sensor api/flame detector dari soketnya lalu diuji dengan menutupi kaca flame detector tersebut, hanya untuk sebatas melihat fungsi system yang seharusnya bahan bakar tidak tersuplai dan berhenti segera secara otomatis.

THERMAL OIL FLOW LIMITER

17. Flow limiter adalah peralatan safety untuk membaca aliran dalam coil. Pada umumnya menggunakan “differential pressure switch” yang diinstal pada outlet thermal oil heater. Beberapa pabrikan memasang “pressure gauge with switch” untuk membaca tekanan oli npada coil nya. Apabila tekanan kurang dari yang disarankan atau melebihi tekanan oprasi normal, maka burner akan dimatikan kan secara otomatis. Hal ini terjadi aapabila ditemukan penyumbatan pada pipa Oli atau pompa sirkulasi tidak berjalan semestinya.

EXPANSION TANK LOW LEVEL

18. Pada expansion tank disarankan dilengkapi dengan pelampung level Oli. Setiap oli panas yang hilang akibat kebocoran ditunjukan dengan matinya burner. Kebocoran ini biasanya ditemukan di pipa boiler, seal pompa sirkulasi, flange dan pipa di line system. Jika kebocoran ini terjadi didalam tungku pemanas, maka akan mengakibatkan ledakan.

KONTROL THERMAL OIL HEATER

19. Parameter utama dari thermal oil heater adalah dari temperature oprasi. Tekanan tidak begitu berpengaruh karena perbedaan tekanan tidak akan mempengaruhi suhu oprasinya. Tekanan dalam system thermal oil pada dasarnya hanya tekanan pompa sirkulasi saja.
20. Ketika suhu oli di dalam unit telah mencapai pengaturan batas suhu atas, input panas dari pembakaran burner (atau tungku) akan dihentikan, namun sirkulasi tetap terus berjalan. Ketika suhu kembali menurun, maka burner akan menyala lagi setelah diperintah nyala oleh temperature controller.

BAB 2 PENGOPRASIAN DAN PEMELIHARAAN

PERSYARATAN KOMPETENSI PERSONAL
1. Thermal oil heater adalah salah satu type dari mesin transfer panas, harus dioperasikan di bawah pengawasan langsung dari orang yang kompeten yang telah mengikuti pelatihan pengoprasian TOH.

PERSIAPAN SEBELUM MENGOPRASIKAN THERMAL OIL HEATER

2. Prosedur berikut ini harus diikuti sebelum menyalakan unit thermal oil heater:

a. Baca dengan seksama intruksi pengoprasian thermal oil heater secara terperinci.
b. Periksa kondisi TOH, lihat tekanan kerja dan suhu pengoprasian maksimum yang diizinkan.
c. Periksa TOH dan instrument yang terpasang untuk memastikan masih bisa digunakan dalam kondisi normal.
d. Periksa sistem bahan bakar termasuk tangki bahan bakar dan valve nya.
e. Bersihkan filter di selang bahan bakar minyak dan filter Oli (jika diperlukan).
f. Periksa apakah level oli di tangki ekspansi normal dan semua pipa bebas dari halangan.
g. Periksa apakah sistem elektrik bekerja dengan baik.
h. Periksa apakah ruang boiler bersih dan berventilasi baik.
i. Periksa ketersediaan APAR.

PROSEDUR MENYALAKAN THERMAL OIL HEATER DENGAN BAHAN NAKAR SOLAR ATAU GAS

3. Sebelum burner dinyalakan, ruang bakar harus benar-benar bersih untuk menghindari ledakan dari bahan bakar yang terkumpul dalam ruang bakar. Proses pembersihan harus diulang setiap kali pembakaran dimulai.
4. Waktu yang diperlukan untuk menaikkan suhu Oli dari kondisi dingin menuju suhu operasi yang diperlukan harus mengikuti rekomendasi pembuat thermal oil.

PEMANTAUAN SELAMA OPERASIONAL

5. Pengamatan berikut harus dilakukan dan dipantau terus-menerus saat mengoperasikan thermal oil heater.
a. Tekanan, temperature dan flow Oli.
b. Level oli pada expansion tank.
c. Kondisi pembakaran di ruang bakar (untuk bahan bakar cair dan gas).
d. Kebisingan dan guncangan pada pipa line yang disebabkan oleh adanya air di dalam pipa.
e. Perbedaan temperature pada inlet dan outlet pemanas.
f. Setiap kebocoran yang ada di pipa, level gauge, flanges, dan seal pada pompa sirkulasi.
g. Kondisi jalannya pompa sirkulasi.

DATA OPERASIONAL

6. Data berikut ini harus dibaca dan selalu diingat.

a. Temperature inlet dan outlet TOH
b. Tekanan Oli
c. Flow rate Oli
d. Level Oli pada expansion tank
e. Temperature gas buang

PENCEGAHAN KECELAKAAN SECARA UMUM SAAT OPERASIONAL THERMAL OIL HEATER

7. Operator harus memperhatikan hal-hal berikut ini saat mengoperasikan thermal oil heater:

a. Jangan membuka segel safety valve atau mencoba mengkalibrasi safety valve (jika terpasang).
b. Jangan coba menyeting perangkat safety seperti pemutusan/cautout pada temperature tinggi.
c. Jangan mengoperasikan sistem pada temperature dan tekanan tinggi melebihi tekanan dan temperature yang diizinkan.

d. Jangan memodifikasi Thermal Oil Heater kecuali setelah mendapatkan persetujuan dari perusahaan pembuat.
e. Semua perangkat safety/pengaman otomatis harus diuji secara berkala sebagaimana diatur dalam instruction manual untuk memastikan bahwa perangkat bekerja dalam kondisi yang baik setiap saat.
f. Thermal oil heater dan instrument penunjang harus dijaga dan dipelihara dengan baik setiap saat. Pekerjaan overhaul harus dilakukan oleh perusahaan teknik dengan reputasi baik di bawah pengawasan seorang Boiler Inspector.

PROSEDURE MEMATIKAN SISTEM THERMAL OIL

8. Operator harus memperhatikan hal-hal berikut ini saat mematikan/shutting down thermal oil heater:
a. Setelah mematikan burner, pompa sirkulasi harus tetap beroprasi sampai temperature Oli dibawah 100 °C.
b. Pendinginan diarahkan ke pompa sirkulasi, itu pun jika ada dan tidak boleh terganggu sampai suhu pompa telah turun selama waktu yang ditetapkan oleh pembuat thermal oil.
c. Direkomendasikan juga untuk menutup valve bahan bakar dan mengamankan suplai power/electrical jika plant ditutup dahulu untuk periode waktu yang lama.

PERAWATAN RUTIN

9. Untuk mempertahankan fungsi thermal oil agar tetap baik, point-point berikut ini harus diperhatikan:
a. Sampel oli thermal oil harus diawasi inspector boiler, kemudian dibawa ke laboratorium untuk tujuan analisa rutinitas servis berkala. Hasil spesifikasi analisa di simpan dan dijadikan referensi user.
b. Buku catatan referensi data thermal oil harus disimpan baik-baik oleh orang yang bertanggung jawab untuk dijadikan catatan dengan dicantumkan tanggal.
c. Pemeriksaan berkala thermal oil heater harus dilakukan dengan alat bantu keselamatan dan dilakukan secara periodic.

d. Perangkat safety unit di TOH harus diperiksa secara berkala:

1) Setingan safety valve (jika dipasang)

2) Alarm aliran terendah (Low Flow)

3) Alarm aliran tertinggi (Hi Flow)

4) Alarm maximal high temperature yang diizinkan

5) Sirkulasi pompa/burner interlock

6) Alarm low level pada expansion tank

7) Alarm gagal pembakaran

8) Alarm high temperature flue gas/gas buang

KESALAHAN UMUM PADA PENGOPRASIAN THERMAL OIL HEATER

10. Over pressure/tekanan berlebih

Penyebab:

a. Penyumbatan di pipa

b. Valve utama kondisi tertutup

c. Kesalahan fungsi sirkulasi PRV (Pump Relieve Valve jika ada)

Perbaikan:

a. Periksa valve-valve dan pipa

b. Periksa reliefe valve

11. Laju aliran Oli rendah

Penyebab:

a. Filter kotor

b. Performa pompa yang mengalami penurunan

c. Valve utama sengaja dimatikan

Perbaikan:

a. Bersihkan filter

b. Periksa putaran pompa dan motornya

c. Check valve utama

12. Temperature oli tinggi

Penyebab:

a. temperature control tidak berfungsi dengan baik

b. flow rate/aliran Oli rendah

c. kesalahan kalibrasi pada temperature controller

perbaikan:

a. check temperature control dan kalibrasikan dengan thermometer dengan akurat

b. check pompa sirkulasi

13. Low level pada expansion tank

Penyebab:

a. Kerusakan pada level controller

b. Terjadi kebocoran pada system

Perbaikan:

a. Check level controller

b. Check kebocoran di keseluruhan sistem

14. Gagal penyalaan burner

Penyebab:

a. Filter tertutup atau ada air di bahan bakar

b. Pompa bahan bakar rusak

c. Kerusakan burner

d. Flame detector/photo cell rusak

Perbaikan:

a. Bersihkan semua filter dan keluarkan air dari system

b. Check system bahan bakar dan flame detector

15. Temperature gas buang tinggi

Penyebab:

a. Kebocoran di pipa coil

b. Ruang bakar kotor dan ada penyerapan bahan bakar

c. Kesalahan rasio bahan bakar dan udara (komposisi bahan bakar dan udara tidak tepat)

d. Filter udara tertutup

Perbaikan:

a. Bersihkan ruang bakar/chamber

b. Bersihkan filter udara

c. Periksa setiap kebocoran di pipa coil

16. Differensial pressure tidak normal

Penyebab:

Penyebab utamanya adalah aliran yang lambat

Perbaikan:

a. Bersihkan filter

b. Periksa kecepatan pompa dan motor penggerak nya

c. Check valve utama

17. Kebisingan dan getaran

Penyebab:

a. Terdapat gas/udara atau air didalam system/pipa oli

b. Buruk nya pipa Oli

c. Ada air di dalam pipa system

Perbaikan:

a. Buang kandungan air di expansion tank

b. Chek ventilasi udara

c. Periksa seal pada pompa sirkulasi

18. Catatan penting:

a. Ketika thermal oil dimatikan karena kondisi abnormal ataupun karena sengaja dimatikan, maka pompa sirkulasi harus tetap dijalankan sekitar 15 menit atau lebih lama lagi sesuai dengan yang di anjurkan oleh pembuat thermaloil heater. Semua kondisi kerusakan harus diperbaiki terlebih dahulu sebelum thermal oil hendak dinyalakan kembali.
b. Sebelum dilakukan perbaikan pada bagian/parts yang bertekanan, maka hal itu harus dilakukan di bawah pengawasan inspector boiler atau pabrik pembuat.
c. Pipa coil di thermal oil tidak boleh dikosongkang selama kondisi unit mesin thermal oil masih dalam keadaan panas, karena kemungkinan terjadinya kebakaran akan cenderung terjadi. Setiap kegiatan hot work seperti pengelasan ketika perbaikan akan menyebabkan situasi berbahaya seperti terjadinya ledakan.
d. Ketika suhu oli panas telah diturunkan, bagian dari mesin dapat diisolasi dan dikosongkan sampai kering kemudian dibilas untuk mencegah pembentukan campuran yang dapat meledak. gas inert juga dapat dimasukkan ke bagian yang diperbaiki selama proses hotwork.

PROSEDUR KESELAMATAN SAAT PENGOPERASIAN DAN PEMELIHARAAN
1. Thermal oil heater harus dilengkapi dengan tangki ekspansi dengan kapasitas yang cukup. Pada tangki ekspansi harus terdapat indikator level (level glass) agar level dapat dengan mudah dibaca dan dipantau.
2. Thermal oil heater dan instrument mesin itu harus ada di dalam ruang khusus.

3. Valve inlet dan outlet pipa Oli harus bisa dikontrol dari luar unit untuk memudahkan pengawasan.
4. Flange-flange tidak diperbolehkan untuk diisolasi.

5. Spesifikasi mengenai Oli harus dilampirkan oleh supplier Oli.

6. Penggunaan pada temperature tinggi saat oprasional tidak boleh melebihi batas kemampuan Oli.
7. Ventilasi udara thermal oil harus dilengkapi dengan jala penangkal api yang baik. Kelengkapan tersebut harus tetap bersih terutama dari cat untuk memastikan ventilasi yang efektif.
8. Lembar peringatan harus ditampilkan di tempat yang mudah terlihat pada thermal oi heater untuk mengingatkan operator.
“BERSIHKAN RUANG BAKAR SEBELUM BURNER DINYALAKAN, DAN BERKURANGNYA OLI BISA DILIHAT DARI LEVEL GLASS EXPANSION TANK”
9. Thermal oil heater harus dioprasikan sesuai prosedur untuk menghindari kerusakan pada thermal oil heater dan keselamatan pekerja.
10. Oli bekas yang yang kondisinya rusak todak boleh digunakan lagi. Pemilik thermal oil harus melaporkan ke pihak lembaga kebersihan lingkungan untuk cara pembuangan oli yang tepat.

BAB 4
PENCEGAHAN KEBAKARAN, PEMADAMAN KEBAKARAN DAN PERALATANNYA

BAHAYA KEBAKARAN

1. Bahan bakar cair menguap pada tingkat suhu yang berbeda-beda. Bahan bakar yang tidak stabil adalah bahan bakar yang mudah menguap pada temperature lebih rendah. Dengan ditambah dengan jumlah udara yang tepat, uap bahan bakar ini akan membentuk campuran yang mudah menyala dan meledak. Jika kemudian ada sedikit pengapian, maka akan terjadi ledakan yang menghancurkan. Kemampuan ledakan dari proses tersebut akan melebihi daya ledak dari bahan bakar padat. Satu gelas bensin, memiliki potensi daya ledak 2,26 kg (5 lb) dinamit.
2. Bahaya kebakaran dalam thermal oil lebih berbahaya dari boiler, karena Oli sendiri merupakan bahan yang mudah terbakar. Ketika oli panas bertemu dengan api, maka oli itu adalah bahan bakar.
3. Api akan menyebabkan retakan panas sedangkan rantai molekul Oli putus membentuk zat bituminous dan gas beracun. flash point/titik bakar yang lebih rendah adalah akibat dari retakan tersebut.
4. Temperature kerja TOH biasanya berdasarkan dari boiling point Oli dan diatur bekerja pada suhu dibawah suhu tersebut. Meskipun supplier mengatakan bahwa temperature bisa dipanasi lagi lebih dari ketentuan, tetapi potensi bahaya dari jenis pemanas ini tidak boleh diabaikan.
5. Ketika oli panas bcor dari unit thermal oil ke luar menuju ruang atmosfir karena disebabkan kebocoran dari flange-flange atau pipa coil, kemungkinan berpotensi terbakar bisa saja terjadi. Yang lebih parahnya lagi, sebuah ledakan akan terjadi jika kebocoran terjadi di dalam ruang bakar thermal oil heater atau ke ruangan boiler dengan ventilasi yang buruk.
6. Banyak factor yang menyebabkan kerusakan pada pipa, seperti penumpukan jelaga pembakaran sehingga menyebabkan pemanasan yang tidak merata ke coil pipa. Selain itu, pembakaran dengan api besar terhadap pipa yang masih dingin pada saat start awal juga dapat menyebabkan kerusakan pipa.

PENCEGAHAN

7. Pencegahan terhadap tangki penyimpanan bahan bakar cair meliputi:

a. Membuang cairan lain yang terkumpul di luar tangki atau pipa yang digunakan.

b. Menghindari dari kemungkinan terjadinya percampuran uadara dan bahan bakar yang dapat menyebabkan kebakaran.
8. Sebuah kotak berisi pasir harus tersedia di beberapa tempat, dan juga ventilasi udara harus tetap diperhatikan terutama di unit ysng menggunakan bahan bakar gas. Ketika terjadi kebocoran, maka pasokan bahan bakar harus dihentikan segera untuk menghindari kemungkinan buruk.
9. Limbah oli yang terbuang dapat terbakar jika ada pemicu sumber panas lain, seperti api atau percikan. Ini dinamakan dengan pengapian spontan. Oleh karena itu limbah minyak harus ditampung didalam drum berbahan logam dan dengan diisi air untuk mencegah pengapian spontan tersebut. Limbah harus dibuang sesegera mungkin.
10. Pada umumnya, cara pencegahan yang terbaik terhadap potensi kebakaran adalah dengan sikap peduli kebersihan, membuang sampah/limbah yang berpotensi terjadi kebakaran dan pengetahuan tentang potensi bahaya. Ledakan ketika mengoprasikan thermal oil atau boiler kebanyakan disebabkan karena kurangnya kepedulian dan tidak adanya pengetahuan tentang potensi bahaya.

PEMADAMAN KEBAKARAN

11. Jika terjadi kebakaran di ruang boiler, yang harus dilakukan oleh operator boiler/thermal oil adalah:
a. Menyalakan alarm.

b. Hubungi bagian layanan kebakaran.

c. Membatasi pasokan udara keruang boiler/thermal oil dengan menutup jendela dan pintu.

d. Memutuskan suplai bahan bakar ke burner.

e. Padamkan api dengan alat pemadam kebakaran.

12. Kebakaran oil – jika pemadaman menggunakan air, maka penyemprotan oli dilakukan dengan menggunakan nozzle khusus. Air akan mendinginkan oli sehingga menurunkan suhu dan menurunkan titik bakar/flash point. Bagaimanapun juga, penyemprotan jangan diberikan terlalu banyak, karena oli akan berposisi di atas air yang tergenang (mengapung), sehingga berpotensi menjadi api kecil yang akan menjadi besar. Busa adalah material pemadam yang paling baik. Setidaknya 9 liter busa (1 tabung APAR) idealnya ditempatkan di tiap ruang boiler. Busa menumpang diatas permukaan Oli dan berfungsi sebagai selimut sehingga menutup pasokan oksigen untuk pembakaran. Pasir kering juga dapat digunakan di area kecil, untuk mecegah penyebaran oli. Suplai bahan bakar oli ke boiler harus dimatikan. Oleh karena itu, shut off valve dipasang di line/jalur pipa bahan bakar yang ditempatkan diluar ruang boiler.
13. Kebakaran elektrikal – dalam hal kebakaran listrik atau kbakaran di area listrik, maka pemadam yang digunakan harus bersifat non-konduktor, jika tidak, maka pemadam bisa tersengat listrik. Bubuk kering pemadam dan CO2 (karbon dioksida) cocok digunakan untuk pemadam kebakaran listrik.

PERALATAN PEMADAM KEBAKARAN

14. Beberapa alat pemadam kebakaran portable yang digunakan untuk memadamkan api dari penyebab oli dan listrik akan dijelaskan di bawah ini.

PEMADAM BUSA/FOAM

15. Biasanya terdiri dari 2 bagian, bagian penampung dalam dan bagian chasing luar. Bagian luar adalah lapisan baja dan penampung dalam terbuat dari tembaga. Bagian penampung dalam berisi aluminium sulfat dan bagian penampung luar berisi soda karbonat. Cara menggunakannya hanya dengan membalikan posisinya.
16. Busa disemprotkan ke jarak 6 s/d 9 meter. Sekali pemadaman akan mengeluarkan 90 liter busa. Busa harus diarahkan langsung ke api.
17. Bahan pemadam busa cocok untuk kebakaran oli. Busa tidak boleh digunakan untuk pemadaman api listrik, karena bersifat konduktor dan dapat menyebabkan sengatan listrik yang berakibat fatal.

PEMADAM BUBUK KERING

18. Pemadam ini cocok untuk kebakaran minyak serta kebakaran listrik. Bubuk kering bersifat non- konduktor listrik, non-korosif, non-abrasif, tidak beracun.
19. Untuk menggunakan alat pemadam, tarik clip safety dan tekan knob bagian atas tabung alat. Bubuk stainless steel harus dilepaskan. Panjang 7,62 meter, lebar 1,82 meter, dalam 1,21 meter. Durasi debit sekitar 28 detik dan debit bisa diperpanjang.

PEMADAM KARBON DIOKSIDA

20. Karbon dioksida adalah non-konduktor listrik. Alat pemadam ini dapat digunakan pada kebakaran yang melibatkan peralatan listrik.

KODE WARNA ALAT PEMADAM

21. Untuk membedakan jenis pemadam, maka dibedakan dengan warna sesuai dengan pengkodean yang ditentukan oleh instansi pemadam kebakaran.
Pengkodean warna sesuai type pemadam Tipe Warna
Air merah

Busa cream

Karbon dioksid Hitam

Bubuk kering Biru

API SERAPAN

22. Jelaga dan karbon yang terbuang akan menempel pada dinding ducting ataupun cerobong. Pada saat yang cukup lama jelaga ini akan menumpuk dan bila gas buang dikeluarkan (bahan bakar gas) makan sedikitnya akan tersimpan di jelaga dan karbon tersebut. Jika kebakaran hasil

serapan ini terjadi, maka akan sangat sullit untuk dipadamkan disebabkan bara api yang terkumpul diserapan api tersbut.
23. Ketika terjadi kebakaran akibat api serapan, maka pasokan bahan bakar harus segera dihentikan dan dumper penyuplai udara pun harus ditutup, karena api akan membesar jika ada oksigen yang masuk. Pemadaman harus disiran dengan air yang berlimpah, jika tidak, maka uap air yang sedikit akan menimbulkan uap api kembali. Penyiraman air juga harus dilakukan ke sekitar area yang terbakar untuk menghindari pelebaran api.
24. Untuk mencegah api serapan, harus dilakukan maintenance yang berkala untuk mengindari penumpukan jelaga dan karbon pada ducting maupun cerobong. Operator harus teliti dalam penyetingan komposisi bahan bakar dan udara pada burner untuk mendapatkan pembakaran yang sempurna. Jika komposisi bahan bakar dan udara yang tersuplai ke burner tidak pas, maka hal itu akan menimbulkan jelaga yang banyak.

KETENTUAN ALAT PEMADAM KEBAKARAN

25. User paling tidak harus menyediakan masing -masing jenis pemadam, diantaranya:

a. 2 tabung/ 9 liter busa pemadam oli.

b. 1 pemadam elektrik (powder atau karbon dioksida).

26. Operator, pengawas dan pekerja yang bekerja disekitar boiler/thermal oil heater harus melakukan latihan kebakaran setidaknya 1 kali setiap 3 bulan. Latihannya meliputi:
a. Mengidentifikasi jenis api.

b. Mengidentifikasi jenis pemadam yang digunakan.

c. Prosedur lain yang harus diikuti.

27. Prosedur penanggulangan kebakaran harus di temple di luar ruangan boiler/thermal oil.

28. Buka catatan latihan kebakaran yang didalamnya dicatat nama, tanda tangan orang yang berpartisipasi dan tanggal latihan kebakaran harus disimpan diruang boiler/thermal oil untuk pemeriksaan.

PENGETAHUAN DASAR PEMBAKARAN
Bahan bakar cair (misalnya minyak diesel) dan bahan bakar gas adalah bahan bakar hidrokarbon yang mengandung molekul terdiri dari atom karbon dan hidrogen. Molekul hidrokarbon dapat ditulis sebagai CmHn, di mana m dan n adalah variabel integer yang menunjukkan jumlah atom karbon dan atom hidrokarbon membangun molekul masing-masing. Kedua atom karbon dan atom hidrogen dapat bereaksi dengan oksigen kimiawi di bawah suhu tinggi. Proses kimia ini lebih dikenal sebagai pembakaran. Beberapa kotoran yang ada dalam bahan bakar dan juga mengalami perubahan kimia selama pembakaran. Produk yang berbahaya dapat dihasilkan tergantung pada jenis kotoran seperti belerang dapat membentuk oksida asam. Namun, kotoran biasanya menempati bagian yang sangat kecil dalam bahan bakar. Operasional yang hati-hati dapat meminimalkan atau bahkan menghilangkan efek dari produk pengotor yang berbahaya.
Molekul hidrokarbon bergabung dengan oksigen pada suhu tinggi untuk membentuk karbon dioksida dan air. Pada saat yang sama, jumlah panas yang besar juga dihasilkan. Bagian dari energi panas ini berguna pada saat digunakan untuk mempertahankan suhu tinggi yang menguntungkan untuk pembakaran (proses kimia) dari bahan bakar, sementara sebagian dari panas ini diekstrak untuk digunakan. Dalam hal ini, panas digunakan untuk menaikkan suhu minyak panas. Rumus Kimia Persamaan:
CmHn + (m + n / 4) O2 = mCO2 + (n / 2) H2O + HEAT

Air mengandung sekitar 20% volume oksigen. Ini adalah sumber oksigen murah untuk pembakaran. Dari persamaan kimia, dapat dilihat bahwa jumlah minimal tertentu oksigen, atau udara, diperlukan untuk bahan bakar hidrokarbon tertentu untuk membakar sempurna. Bagi kebanyakan thermal oil heater, udara diatur 20-50%. Udara yang berlebihan akan menurunkan efisiensi boiler, menyebabkan ketidakstabilan api dan membuat suhu gas buang tinggi dan tidak diinginkan. Jumlah udara tergantung pada bahan bakar m dan n bervariasi dengan jenis atau pasokan bahan bakar. Operator harus berkonsultasi dengan pemasok bahan bakar dan supplier burner untuk rasio udara/bahan bakar yang optimal. Operator harus menyesuaikan asupan udara untuk membangun api optimal. Api optimal adalah api yang stabil, yaitu api yang pada cerobong gas buangnya tidak berwarna (bersih).
burner yang menyuntikkan gas atau bahan bakar diesel yang bercampur dengan udara dari blower. Turbulensi yang dihasilkan oleh udara secara menyeluruh mencampur partikel bahan bakar dan udara menghasilkan banyak reaksi kontak permukaan antara molekul hidrokarbon dan molekul oksigen. Jika keluar api, panas akan menyebabkan proses kimia yang dijelaskan di atas terjadi dan mempertahankan nyala api. Jika tidak ada api tapi percikan api diproduksi, percikan suhu tinggi (2000 °C atau di atasnya) memulai proses pembakaran dan menciptakan api. Proses pembakaran

adalah dengan sendirinya dan api terus berlanjut selama ada bahan bakar dan udara yang cukup yang tersedia dan dicampur pada rasio yang benar.
Minyak diesel/solar bahkan bisa menguap pada suhu kamar. Penguapan pada dasarnya mirip dengan bahan bakar gas dan mudah terbakar. Setelah api telah padam atau boiler telah ditutup, minyak diesel menguap dan bercampur dengan udara di dalam tungku. Campuran ini mudah terbakar dan sangat berbahaya. Jika ada material panas hadir mungkin memicu pembakaran yang sangat cepat dengan sejumlah besar panas yang dilepaskan dalam waktu yang sangat singkat atau lebih tepatnya, sebuah ledakan dapat terjadi. Sebuah percikan untuk pengapian cukup untuk menyebabkan ledakan tersebut. Hal ini dapat terjadi jika operator mencoba untuk menyalakan api di dalam ruang bakar untuk penyalaan awal tanpa mengetahui bahwa ada bahan yang mudah meledak. Hal serupa berlaku pada bahan bakar gas. Operator harus mengambil tindakan pencegahan untuk menghilangkan akumulasi campuran peledak. Aturannya adalah untuk membersihkan tungku setiap kali sebelum mencoba untuk menyalakan api dan untuk membersihkan ruang bakar setelah pemadaman api. Jangan pernah mencoba untuk menyalakan api menggunakan panas dari ruang bakar. Dalam situasi seperti itu, sejumlah besar bahan bakar diinjeksikan ke dalam tungku, menjadi pemicu yang sangat baik untuk campuran bahan bakar dan udara, dan kemudian menjadi sebuah ledakan.
Selama proses pengapian, bahan bakar dibuat partikel kecil dengan cara dikabutkan oleh burner pada tekanan tinggi atau disuntikan melalui nozzle gas yang bercampur dengan udara. Ini adalah campuran yang mudah terbakar dan harus dibakar sebelum campuran tersebut keluar banyak dari burner. Jika pemicu api tidak nyala, maka suplai campuran tersebut sudah banyak keluar dan disemprotkan dan hal ini sangat mudah memicu ledakan. Dalam kasus ini, operator tidak harus berusaha untuk mnyalakan api, operator hanya cukup membuang bahan bakar yang tidak terbakar dan sebelumnya menutup suplai bahan bakar. Operator harus memeriksa kerusakan dari gagal api dalam system pembakaran burner tersebut. Kebanyakan, control pembakaran otomatis dipasang pada thermal oil dan akan secara otomatis melakukan control dan upaya yang disebutkan di atas, terkecuali memeriksa sistem. Bagaimanapun juga, operator harus mengambil konsekwensi, saat ada kesalahan system otomatis, system harus diubah ke manual dan operator harus melakukan pekerjaan diatas secara manual.

SELALU BERSIHKAN RUANG BAKAR SAAT AKAN MELAKUKAN PEMBAKARAN!

Preface

Thank you for purchasing an Autonics product.
Please familiarize yourself with the information contained in the Safety Precautions section before using this product.
This user manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access.

User Manual Guide

 Please familiarize yourself with the information in this manual before using the product.
 This manual provides detailed information on the product’s features. It does not offer any guarantee concerning matters beyond the scope of this manual.
 This manual may not be edited or reproduced in either part or whole without permission.
 A user manual is not provided as part of the product package. Visit our web site (www.autonics.com) to download a copy.
 The manual’s content may vary depending on changes to the product’s software and other unforeseen developments within Autonics, and is subject to change without prior notice. Upgrade notice is provided through out homepage.
 We contrived to describe this manual more easily and correctly. However, if there are any corrections or questions, please notify us these on our homepage.

User Manual Symbols

Symbol Description

Supplementary information for a particular feature.

Failure to follow instructions can result in serious injury or death.

Failure to follow instructions can lead to a minor injury or product damage.

An example of the concerned feature’s use.
Ȅ1 Annotation mark.

Safety Precautions

 Following these safety precautions will ensure the safe and proper use of the product and help prevent accidents, as well as minimizing possible hazards.
 Safety precautions are categorized as Warnings and Cautions, as defined below:

Warning Failure to follow the instructions may lead to a serious injury or accident.

Caution Failure to follow the instructions may lead to a minor injury or accident.

 Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss. (e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.)
Failure to follow this instruction may result in personal injury, fire, or economic loss.
 The unit must be installed on a device panel before use. Failure to follow this instruction may result in electric shock.
 Do not connect, repair, or inspect the unit while connected to a power source. Failure to follow this instruction may result in electric shock.
 Check the terminal numbers before connecting the power source. Failure to follow this instruction may result in fire.
 Do not disassemble or modify the unit. Please contact us if necessary. Failure to follow this instruction may result in electric shock or fire.

 Do not use the unit outdoors.
Failure to follow this instruction may result in shortening the life cycle of the unit, or electric shock.
 When connecting the power input and relay output cables, use AWG20 (0.05mm2) cables and make sure to tighten the terminal screw bolt above 0.74N.m to 0.90N.m.
Failure to follow this instruction may result in fire due to contact failure.
 Use the unit within the rated specifications.
Failure to follow this instruction may result in shortening the life cycle of the unit, or fire.
 Do not use loads beyond the rated switching capacity of the relay contact.
Failure to follow this instruction may result in insulation failure, contact melt, contact failure, relay broken, or fire.
 Do not use water or oil-based detergent when cleaning the unit. Use dry cloth to clean the unit.
Failure to follow this instruction may result in electric shock or fire.
 Do not use the unit where flammable or explosive gas, humidity, direct sunlight, radiant heat, vibration, or impact may be present.
Failure to follow this instruction may result in fire or explosion.

 Keep dust and wire residue from flowing into the unit.
Failure to follow this instruction may result in fire or product damage.
 Check the polarity of the measurement input contact before wiring the temperature sensor. Failure to follow this instruction may result in fire or explosion.
 For installing the unit with reinforced insulation, use the power supply unit which basic level is ensured.
The above specifications are subject to change and some models may be discontinued without notice.

Table of Contents
Preface 3
User Manual Guide 4
User Manual Symbols 5
Safety Precautions 6
Table of Contents 9
1 Product Introduction 13
1.1 Features 13
1.2 Components and Accessories 14
1.3 Ordering information 20
1.4 Parts descriptions 22
2 Specifications 25
3 Dimensions 27
4 Connections 33
4.1 Precautions for wiring 35
4.1.1 Sensor connection 35
4.1.2 Communication connection 35
5 Preparation and Startup 37
5.1 Initial display when power ON 37
5.2 Basic controls 38
5.2.1 Parameter setting sequence 38
5.2.2 Set value (SV) setting 38
5.2.3 MV monitoring and manual control 39
5.3 Parameter group 41
5.4 Parameter groups 44
5.4.1 Parameter 1 group [ R1] 44
5.4.2 Parameter 2 group [ R ] 45
5.4.3 Parameter 3 group [ R ] 47
5.4.4 Parameter 4 group [ R4] 49
5.4.5 Parameter 5 group [ R ] 52
6 Parameter Settings and Functions 55
6.1 Input 55
6.1.1 Input types and temperature ranges 55
6.1.2 Input type [ R ൺ IN-T] 56
6.1.3 Sensor temperature unit [ R ൺ NIT] 56
6.1.4 Analog input/scale value 57
6.1.5 Input correction [ R ൺ IN- ] 59
6.1.6 Input digital filter [ R ൺ M vF] 59
6.1.7 High/Low-limit value of setting value(SV) [ R ൺ – V/ L- V] 60
6.2 Control output 61
6.2.1 Control output mode [ R ൺ O-FT] 61

6.2.2 MV High/Low-limit value settings [ R ൺ -MV / L-MV] 66
6.2.3 Ramp settings [ R ൺ R M / R M / r NT] 67
6.2.4 Auto/Manual control settings 69
6.2.5 Output settings 72
6.3 Temperature control 73
6.3.1 Temperature control mode [ R ൺ C-M ] 73
6.3.2 ON/OFF control [ R ൺ C-M ൺ ONOF] 74
6.3.3 PID control [ R ൺ C-M ൺ I ] 75
6.3.4 Auto-tuning 77
6.4 Alarm output 79
6.4.1 Alarm operation [ R4 ൺ L-1/ L- / L- ] 79
6.4.2 Alarm output options [ R4 ൺ L!T/ L T] 81
6.4.3 Alarm SV settings [ R1 ൺ L!L/ L! / L L/ L / L L/ L ] 82
6.4.4 Alarm output hysteresis [ R4 ൺ ! / / ] 82
6.4.5 Alarm N.O./N.C. [ R4 ൺ !N/ N/ N] 83
6.4.6 Alarm output delay settings
[ R4 ൺ !ON / !OF/ ON / OF/ ON / OF] 84
6.4.7 Loop break alarm(LBA) [ R4 ൺ L-1/ L- / L- ൺ L ] 85
6.4.8 Sensor break alarm [ R4 ൺ L-1/ L- / L- ൺ ] 87
6.4.9 Heater burnout alarm [ R4 ൺ L-1/ L- / L- ൺ ] 88
6.4.10 Alarm output deactivation [ R ൺ I- ൺ lR ] 89
6.4.11 Alarm output examples 90
6.5 Analog transmission 93
6.5.1 Analog transmission output value settings [ R4 ൺ M1/ M ] 93
6.5.2 Transmission output high/low-limit value settings
[ R4 ൺ F L1/ F 1ൺ F L / F ] 93
6.6 Communication settings 95
6.6.1 Unit address settings [ R4 ൺ R ] 95
6.6.2 BPS (bits per second) settings [ R4 ൺ ] 95
6.6.3 Communication parity bit [ R4 ൺ RT ] 96
6.6.4 Communication stop bit settings [ R4 ൺ T ] 96
6.6.5 Response wait time settings [ R4ൺ R T] 96
6.6.6 Enable/Disable communication write[ R4ൺ COMW] 97
6.6.7 USB to Serial communication connection 97
6.7 Additional features 98
6.7.1 Monitoring 98
6.7.2 RUN/STOP [ R1 ൺ R- ] 99
6.7.3 Multi SV 100
6.7.4 Digital input 101
6.7.5 Error 103
6.7.6 User level setting [ R ൺ R] 104
6.7.7 Lock settings 104
6.7.8 Parameter reset [INIT] 105
6.7.9 Password settings [ R ൺ W ] 105
7 Setting group parameter description 107
7.1 Setting group [ V ] 107
7.2 MV monitoring/manual control setting group [ MV ] 107
7.3 Parameter 1 setting group [ R1 ] 108

7.4 Parameter 2 setting group [ R ] 109
7.5 Parameter 3 setting group [ R ] 111
7.6 Parameter 4 setting group [ R4 ] 113
7.7 Parameter 5 setting group [ R ] 115
7.8 Password entry parameter 116
7.9 Parameter change reset parameters 116
8 DAQMaster 117
8.1 Overview 117
8.2 Major features 118
8.3 Special feature for TK Series 120
8.3.1 Parameter mask 120
8.3.2 User parameter group [ R ] 122

1 Product Introduction
1.1 Features
TK Series – standard PID temperature controller – realizes more powerful control with super high-speed sampling cycles of 50 ms and —0.3% display accuracy. It supports diverse control modes including heating & cooling simultaneous control, and automatic/manual control and communication functions. In addition, TK Series covers all necessary features for high performance temperature controllers – that is, diverse input sensor support, multi SV setting, SSR drive output + current output, high resolution display and compact size.

 Improves convenience for parameter setting (using DAQMaster)
 Parameter mask
To hide parameters which are not unnecessary or not used frequently
 User parameter group
To group parameters which are used frequently as one group for more convenient setting
 Super high-speed sampling cycle (10 times faster compared to existing models); 50 ms sampling cycle and ±0.3% display accuracy
 Improved visibility with wide display and high luminance LED
 High performance control with heating & cooling control and automatic/manual control modes
 Communication function supported: RS485 (Modbus RTU type)
 PC parameter setting (USB and RS 485 communication)
Free download comprehensive device management program (DAQMaster)
ȄCommunication converter, sold separately
: SCM-WF48 (Wi-Fi to RS485•USB wireless communication converter),
SCM-US48I (USB to RS485 converter), SCM-38I (RS232C to RS485 converter), SCM-US (USB to serial converter)
 Current output or SSR drive output selectable
 ON/OFF, Cycle, Phase control by SSRP function
 Heater burn-out alarm (CT input) (except TK4SP)
ȄCT, sold separately: CSTC-E80LN, CSTC-E200LN, CSTS-E80PP
 Multi SV setting function (Max. 4 ) – selectable via digital input terminals
 Space saving mounting possible with compact design ; downsized by 38% (depth-based)
 Multi-input/multi-range

1.2 Components and Accessories
(1) Components
Make sure all of the above components are included with your product package before use. If a component is missing or damaged, please contact Autonics or your distributor.
Visit www.autonics.com to download a copy of the user manual.
(2) Sold separately
 Terminal cover (unit: mm)

 Socket (for TK4SP) (unit: mm)PG-11 PS-11(N)(unit: mm)(unit: mm)

 Communication converter

SCM-WF48 (Wi-Fi to RS485•USB
wireless communication converter) SCM-US48I
(USB to RS485 converter)

SCM-38I
(RS232C to RS485 converter) SCM-US
(USB to Serial converter)

 Current transformer(CT)

For using CT, do not supply first part current when opening CT output. It occurs high voltage at CT output part.
Using current of above CTs are same as 50A. But be sure that inner hole sizes are different. Select it properly for the environment.

 Display unit

Connect RS485 communication input type display unit (DS/DA-T Series) and TK Series, the display unit displays present value of the device without PC/PLC.

Images of components and accessories may differ from actual products.
For detailed information about any of the above products, please refer to the concerned product’s user manual.
Visit our website (www.autonics.com) to download copies of the user manuals.

1.3 Ordering information TK 4 S – 1 4 R R

Category Description
£ Item TK Temperature/Process controller
¤ Digit 4 9999(4digit)

¥ Size N DIN W48×H24mm
SP DIN W48×H48mm (11 pin plug typeȄ9)
S DIN W48×H48mm (terminal block type)
M DIN W72×H72mm
W DIN W96×H48mm
H DIN W48×H96mm
L DIN W96×H96mm

¦ Input/Output OptionȄ1N
1 Standard: Alarm output 1+CT inputȄ6,
Heating&Cooling: Alarm output 2Ȅ7
2 Standard: Alarm output 1+Alarm output 2
D Standard: Alarm output 1+Digital input(DI-1, DI-2)
R Standard: Alarm output 1+Digital input, Heating&Cooling: Trans. output
T Standard: Alarm output 1+RS485com. output
Heating&Cooling: RS485com. output
S P 1 Alarm output 1

S M W H L 1 Alarm output 1
2 Alarm output 1+Alarm output 2
R Alarm output 1+Trans. output
T Alarm output 1+RS485com. output
A Alarm output 1+Alarm output 2+Trans. output
B Alarm output 1+Alarm output 2+ RS485 com. output
D Alarm output 1+Alarm output 2+Digital input(DI-1, DI-2)Ȅ8
§ Power Supply 2Ȅ5 24VAC 50/60Hz, 24-48VDC
4 100 to 240VAC, 50/60Hz ¨ OUT1 Control OutputȄ2 R Relay output
SȄ4 SSR drive output(standard ON/OFF, cycle, phase control)
C Current output or SSR drive output selectable

© OUT2 Control OutputȄ3  Standard N None
ȄSelect in case of standard control (heating or cooling)
Heating & Cooling R Relay output
C Current output or SSR drive output selectable

CT (Current Transformer) input is supported by all models.
However, TK4SP (11 pin plug type) does not support CT input due to its limited number of terminal blocks.

1.4 Parts descriptions

£ Measured value(PV) display part:
RUN mode: It displays currently measured value (PV).
Setting mode: It displays the parameter.
¤ Set value (SV) display part:
RUN mode: It displays the set value (SV).
Setting mode: It displays the set value of the parameter.
¥ Unit(ഒ/ഘ/%) indicator: It displays the unit set at display unit [ NT] in parameter 3 group. (TK4N Seires does not support ‘%’ unit.)
¦ Manual control indicator: It turns ON during manual controlling.
§ Multi SV indicator: One of SV1 to 3 indicator will be ON in case of selecting multi SV function.
¨ Auto tuning indicator: It flashes by 1 sec. when executing auto tuning.

© Alarm output (AL1, AL2) indicator: It turns ON when the alarm output is ON.
ª Control output (OUT1, OUT2) indicator: It turns ON when the control output is ON. During cycle/phase controlling in SSRP function model (TK4ǹ-ǹ4Sǹ)type, when MV is over 5.0%, it turns ON.
Ȅ To use current ouput, when MV is 0.0% in manual control, it turns OFF. Otherwise, it always turns ON. When MV is over 3.0% in auto control, it turns ON and when MV is below 2.0%, it turns OFF.
« key: It is used when switching auto control to manual control.
Ȅ TK4N/S/SP do not have the key. The key operates switching
simultaneously.
¬ key: It is used when entering parameter group, returning to RUN mode, moving parameter, saving the set value.
­ key: It is used when entering the set value changing mode and moving or changing up/down digit.
® Digital input key: When pressing the keys for 3 sec. at the same time, it operates the function (RUN/STOP, alarm clear,auto tuning) set at digital input key [ I-] in parameter 5 group.
¯ PC loader port: It is the PC loader port for serial communication to set parameter and monitoring by DAQMaster installed in PC. Use this for connecting SCM-US(USB to Serial converter, sold separately).
° Input selection switch: Used when switching sensor (TC, RTD) input ȧ analog input(mV, V, mA) (only the previous models)

2 Specifications

Series TK4N TK4SP TK4S TK4M TK4W TK4H TK4L
Power supply AC voltage 100-240VAC~, 50/60Hz
AC/DC voltage – 24VAC~ 50/60Hz, 24-48VDC
Allowable voltage range ±10% of rated voltage
Power consu mption AC voltage Max. 6VA Max. 8VA
AC/DC voltage – Max. 8VA(24VAC~ 50/60Hz), Max. 5W(24-48VDC )
Display method 7 segment (PV: red, SV: green), all other displays (green, yellow, red) LED

Character size PV(W×H) 4.5 × 7.2
mm 7.0×14.0mm 9.5×20.0
mm 8.5×17.0
mm 7.0×14.6
mm 11.0×22.0mm
SV(W×H) 3.5 × 5.8
mm 5.0×10.0mm 7.5×15.0
mm 6.0×12.0
mm 6.0×12.0
mm 7.0×14.0mm

Input type RTD JPt 100വ, DPt 100വ, DPt 50വ, Cu 100വ, Cu 50വ, and Nikel 120വ (6 types)
TC K, J, E, T, L, N, U, R, S, B, C, G, and PLII (13 types)
Analog Voltage: 0-100mV, 0-5V, 1-5V, and 0-10V (4 types) Current: 0-20mA and 4-20mA (2 types)

Display accuracy RTD At room temperature (23ഒ ± 5ഒ): (PV ± 0.3% or ± 1Ȕ, select the higher one) ± 1 digitȄ1 Out of room temperature ranges: (PV ± 0.5% or ± 2Ȕ, select the higher one) ± 1 digit
In case of TK4SP Series, ±1Ȕ will be added.

TC

Analog At room temperature (23ഒ ± 5ഒ): ± 0.3% F.S. ± 1 digit
Out of room temperature ranges: ± 0.5% F.S. ± 1 digit
CT Input ± 5% F.S. ± 1 digit

Control output Relay OUT1, OUT2: 250VAC~ 3A 1a
SSR Max.11VDC ± 2V 20mA
Current DC4-20mA or DC0-20mA selectable (resistance load max. 500വ)
Alarm output
Relay AL1, AL2 Relay: 250VAC~ 3A 1a
(TK4N AL2: 250VAC~ 0.5A 1a (max. 125VA), TK4SP has only AL1)
Option output Transmissio n output DC4-20mA (resistance load max. 500വ, output accuracy: —0.3% F.S)
Comm. RS485 Communication Output (Modbus RTU)

Option input CT 0.0-50.0A (primary heater current reading range) ȄCT Ratio is 1/1000 (except TK4SP)

Digital input Contact input – ON: Max. 2k˖, OFF: Min. 90k˖
Non-Contact input – ON: Residual voltage max. 1.0VDC , OFF: Leakage current min. 0.1mA Leakage current: Approx. 0.5mA per input
ȄTK4S/M: 1 (TK4S-Dǹǹǹ: 2, TK4SP: None), TK4N/H/W/L: 2 (except TK4SP)

Control type Heating & cooling
ON/OFF, P, PI, PD, PID control mode
Heating or Cooling

Hysteresis RTD/ Thermocouples: 1 to 100ഒ/ഘ (0.1 to 100.0ഒ/ഘ) variable Analog: 1 to 100 digit
Proportional band (P) 0.1 to 999.9ഒ/ഘ (0.1 to 999.9%)

Integral time (I) 0 to 9999sec.
Derivative time (D) 0 to 9999sec.
Control period (T) Relay output, SSR drive output: 0.1 to 120.0 sec. Current output+SSR drive output: 1.0 to 120.0 sec.
Manual reset value 0.0 to 100.0%
Sampling period 50 ms
Dielectric strength 2,000 VAC 50/60 Hz for 1 min. (between power source terminal and input terminal)
Vibration resistance 0.75mm amplitude at frequency of 5 to 55 Hz (for 1 min.) in each of X, Y, Z directions for 2 hours

Relay life cycle Mechanical OUT1/OUT2: Min. 5,000,000 operations
AL1/2: Min. 20,000,000 operations (TK4H/W/L: Min. 5,000,000 operations)
Electrical OUT1/OUT2: Min. 200,000 operations
AL1/2: Min. 100,000 operations(TK4H/W/L: Min. 200,000 operations)
Insulation resistance Min. 100MK (at 500VDC megger)
Noise resistance Square shaped noise by noise simulator (pulse width 1 ᓪ) ±2 kV R-phase, S-phase
Memory retention Approx. 10 years (non-volatile semiconductor memory type)

Environ
-ment Ambient temp. -10 to 50ഒ, Storage: -20 to 60ഒ
Ambient humi. 35 to 85% RH, Storage: 35 to 85% RH
Protection IP65 (front panel) ୔TK4SP: IP50 (front panel)
Insulation type Double insulation or reinforced insulation (mark: , dielectric strength between the measuring input part and the power part: 2kV)
Approval

WeightȄ2 Approx. 140 g
(Approx. 70 g) Approx. 130 g
(Approx. 85 g) Approx. 150 g
(Approx. 105 g) Approx. 210 g
(Approx. 140 g)
Approx. 211 g
(Approx. 141 g) Approx. 249 g
(Approx. 198 g)
ೈ1. $W URRP 7HPSHUDWXUH UDQJH(23ഒ s 5ഒ)
 7& ., -, 7, 1, ( W\SH , EHORZ -100ഒ / 7& /, 8, 3/ǥ, 57′ &X50˖, ‘3W50˖: (39 s0.3% RU s2ഒ, VHOHFW WKH KLJKHU RQH) s 1GLJLW
 7& &, *, 5, 6 W\SH EHOORZ 200ഒ: (39 s0.3% RU s3ഒ, VHOHFW WKH KLJKHU RQH) s 1 GLJLW
 7& % W\SH, EHORZ 400ഒ: 7KHUH LV QR DFFXUDF\ VWDQGDUG.
2XW RI URRP WHPSHUDWXUH UDQJH
 57′ &X50˖, ‘3W50˖: (39 s0.5% RU s3ഒ, VHOHFW WKH KLJKHU RQH) s1GLJLW
 7& 5, 6, %, &, * W\SH: (39 s0.5% RU s5ഒ, VHOHFW WKH KLJKHU RQH) s1GLJLW
 2WKHUV, %HORZ -100ഒ, :LWKLQ s5ഒ
,Q FDVH RI 7.463 6HULHV, s1ഒ ZLOO EH DGGHG WR WKH GHJUHH VWDQGDUG.
ೈ2. 7KH ZHLJKW LV ZLWK SDFNDJLQJ DQG WKH ZHLJKW LQ SDUHQWKHVHV LV RQO\ XQLW ZHLJKW.
Ȅ(QYLURQPHQW UHVLVWDQFH LV UDWHG DW QR IUHH]LQJ RU FRQGHQVDWLRQ.

3 Dimensions

(1) TK4N Series

(2) TK4S Series

(3) TK4SP Series

(4) TK4M Series (unit: mm)3 Dimensions(5) TK4H Series
(6) TK4W Series
(7) TK4L Series(8) Bracket
 TK4N Series
 TK4S, TK4SP Series
 TK4M/W/H/L Series 3 Dimensions

(9) Terminal cover (sold separately)
 TK4N COVER (48×24mm)

ȄTK4N COVER is accessory.
 RSA-COVER (48Ő48mm)

 RMA-COVER (72×72mm)

 RHA-COVER (48×96mm, 96×48mm)

3 Dimensions(10) Panel cut-out

 Installation
TK4N TK4S/SP Other Series

Insert the unit into a panel fasten the bolt with a (+) driver. Insert the unit into a panel fasten the bracket by pushing with tools with a (-) driver.

4 Connections
Be sure that the polarity for input connectiong a temperature sensor or analog input. Standard model has shaded terminals only.
When the operation mode of heating&cooling OUT2 relay output model is heating or cooling control, the OUT2 is usable as alarm output 3(except TK4N).
When the operation mode of heating & cooling OUT2 current model is heating or cooling control, the OUT2 is usable as transmisstion output 2.
(1) TK4N Series
(2) TK4S Series

Features one digital input terminal (DI-1) due to limited number of terminal blocks. Supports two multi SVs (SV1 and SV2) only.

(3) TK4SP Series

Does not feature any digital input terminal due to limited number of terminal blocks. 11Pin Socket(PG-11, PS-11): Sold separately
(4) TK4M Series

Features one digital input terminal (DI-1) due to limited number of terminal blocks. Supports two multi SVs (SV1 and SV2) only.
(5) TK4W, TK4H, TK4L Series
Ȅ Digital input is not electrically insulated from internal circuits, so it sholud be insulated when connecting other circuits. (photocoupler, relay, independent switch)

4.1 Precautions for wiring
 Mixing up the input terminals with output terminals and vice versa can lead to product damage.
 Use only sensors supported by the product.
 Make sure to connect rated SSRs or loads to the output terminals. Make sure to connect communication cable with correct communication terminals (A, B).
 Make sure to observe correct polarity of power source terminals. (+ and -).
 Make sure to connect correct polarity of temperature sensor and analog input.

4.1.1 Sensor connection
 Compensation Wire Connection
For thermocouple sensors, use compensation wire of the same specification as input sensors. Using an extension wire of different specifications and/or material will increase inaccuracy of temperature sensing. It is recommended to choose high performance compensation wire for more reliable sensing.
 Measurement Error
Do not mix up the direction of the input sensor connector. Carefully adjust both load and sensor positions.
Make sure the sensor is securely attached to the input connector.
 AC Power Cable and Wiring
Do not put the sensor lines in close proximity of the AC power lines.

4.1.2 Communication connection

Do not tie together with the AC power line and communication line. Only use twisted pair wires for the communication lines. Do not allow the communication line to exceed 800m in length.
For further details, please refer to ‘6.6 Communication ’.

5 Preparation and Startup
5.1 Initial display when power ON
When power is supplied, whole display parts flash for 1 sec. Afterwards, model name and input sensor type will be flash twice and then in enters into RUN mode.

£Whole display part ¤Model type display ¥Input type display
twice ¦RUN mode

SV display part Display type Type1, , , R, T 7.41

Option Input/ Output
1 Standard: Alarm output1+CT input Heating & Cooling: Alarm output2

Standard: Alarm output1+Alarm output2

Standard: Alarm output1+Digital input(DI-1, DI-2) Heating & Cooling: Digital input (DI-1, DI-2)
R Standard: Alarm output1+Trans. output
Heating & Cooling: Trans. output
T Standard: Alarm output1+RS485 com. output Heating & Cooling: RS485 comm. output 1, , R, T, ,7.46/63/0/:/+// 1 Alarm output1

Alarm output1+Alarm output2
R Alarm output1+ Trans. output
T Alarm output1+RS485 com. output

Alarm output1/2+ Trans. output

Alarm output1/2+RS485 com. output

Alarm output1/2+ Digital input(DI-1, DI-2)
4 Power supply 100-240VAC 50/60Hz

R, , C
OUT1
control output R Relay contact

SSR drive output
(standard ON/OFF, cycle, phase control)
C Current + SSR drive output

N, R, C
OUT2
control output N None
R Relay contact
C Current + SSR drive output

5.2 Basic controls

5.2.1 Parameter setting sequence
Parameters of each group are connected each other. Therefore, follow the below parameter order.

Parameter 3 Group [ R ] ൺ Parameter 4 Group [ R4] ൺ Parameter 5 Group [ R ] ൺ
Parameter 2 Group [ R ] ൺ Parameter 1 Group [ R1] ൺ SV Setting [ V]
Changing Parameter 3 Group’s parameters can sometimes reset other associated parameters. Always make sure to check if such parameters have been affected.

5.2.2 Set value (SV) setting £

Press any key among , , in RUN mode to enter SV setting mode. Last digit (100 digit) on SV display part flashes.¤

Press the key to move digit. (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100)¥Press the , keys to raise or lower the set value.

Press the key to save the set value. If there is no additional key operations in 3 sec., the changed SV is automatically saved.

5.2.3 MV monitoring and manual control
£ While in RUN mode, press the key to commence manual control. The SV display will then show H (heating control) or C (cooling control) and simultaneously display the MV to indicate commencement of MV monitoring.
¤ If the , , or is pressed while MV monitoring is in progress, the MAN indicator will turn on and the last digit will start to flash to indicate activation of manual control.
¥ Press the key to change the flashing digit (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100).
¦ Select the digit and configure the desired MV value using the , keys.
§ To end manual control, press the key. The MAN indicator will turn off, and the system will revert to auto control mode.
¨ While in heating & cooling control mode, set the manual heating MV and then press the key to see C (cooling control) and the current cooling MV value on the SV display indicating commencement of cooling MV monitoring.
© If the , , or is pressed while MV monitoring is in progress, the MAN indicator turns on and the last digit starts to flash to indicate activation of manual control.
ª Press the key to change the flashing digit (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100).
« Select the digit and configure desired cooling MV value using the , keys.
¬ To end manual control, press the key. The MAN indicator will turn off, and the system will revert to auto control mode.
­ While in standard control mode (heating control or cooling control), pressing the key once from the MV monitoring stage, or any other stage, will revert the system to auto control mode.
® During heating & cooling control mode, pressing the key once from the MV monitoring stage, or any other stage, will skip the system to the cooling MV monitoring stage.

For heating & cooling control, the system reverts to auto control after going through heating monitoring, manual heating control, cooling monitoring, and manual cooling control stages in sequence.
Heating MV remains in effect during cooling monitoring and manual cooling control. When setting ditial input function as AUTO/MANUAL, MV monitoring and control status
Control status MV Monitoring
AUTO Not changed Avaliable
MANUAL Changeable
TK4N/S/SP model’s the key alternates the key.

 Hold the key over 2 sec in RUN mode to enter into setting mode.
 Hold the key for 1.5 sec while in setting mode to move to other parameter group.
 Hold the key over 3 sec while in setting mode to return to RUN mode.
 Press the key at the last parameter of each parameter, it moves to that parameter name. You can move to other groups.
 If there is no additional key operation within 30 sec after entering into setting mode, it will be automatically returned to RUN mode and previous setting value will be remained
 The shaded parameters are displayed in common.
The others may not be displayed by the specifications of the product, other parameter’s setting, or parameter mask setting.

5.4 Parameter groups

5.4.1 Parameter 1 group [ R1]

5.4.2 Parameter 2 group [ R ]

5.4.3 Parameter 3 group [ R ]

Ȅ OUT1, OUT2 output:
 In case that OUT1, OUT2 output is relay output type
: O T1, O! R, O!M , O T , O R, O M parameters are not displayed.
 In case that OUT1,OUT2 output is current + SSR drive output type, when OUT1,OUT2 output is set to R
: Output method of O! R, O R is held in TN and parameter is not displayed.
 In case that OUT1, output is SSR drive output model of SSRP function and OUT2 output is current + SSR drive output
– O T1, O!M are not displayed.
– O! R can set to TN , C CL,
-When O R is set to R it is held in TN and parameter is not displayed.

5.4.4 Parameter 4 group [ R4]

5.4.5 Parameter 5 group [ R ]

6 Parameter Settings and Functions
6.1 Input

6.1.1 Input types and temperature ranges

Input types
Display Temperature range
(ഒ) Temperature range
(ഘ)

Thermoc ouple (TC)
K (CA) 1 Ca -200 to 1350 -328 to 2463
0.1 CaL -199.9 to 999.9 -199.9 to 999.9

J (IC) 1 JI -200 to 800 -328 to 1472
0.1 JI L -199.9 to 800.0 -199.9 to 999.9

E (CR) 1 Cr -200 to 800 -328 to 1472
0.1 CrL -199.9 to 800.0 -199.9 to 999.9

T (CC) 1 TC -200 to 400 -328 to 752
0.1 TC L -199.9 to 400.0 -199.9 to 752.0
B (PR) 1 R 0 to 1800 32 to 3272
R (PR) 1 R R 0 to 1750 32 to 3182
S (PR) 1 R 0 to 1750 32 to 3182
N (NN) 1 N NN -200 to 1300 -328 to 2372
C (TT)Ȅ1 1 C TT 0 to 2300 32 to 4172
G (TT)Ȅ2 1 TT 0 to 2300 32 to 4172

L (IC) 1 LI -200 to 900 -328 to 1652
0.1 LI L -199.9 to 900.0 -199.9 to 999.9

U (CC) 1 C -200 to 400 -328 to 752
0.1 C L -199.9 to 400.0 -199.9 to 752,0
Platinel II 1 LII 0 to 1390 32 to 2534

RTD Cu 50വ 0.1 C -199.9 to 200.0 -199.9 to 392.0
Cu 100വ 0.1 C 1 -199.9 to 200.0 -199.9 to 392.0
JPt 100വ 1 J -200 to 650 -328 to 1202
JPt 100വ 0.1 J L -199.9 to 650.0 -199.9 to 999.9
DPt 50വ 0.1
-199.9 to 600.0 -199.9 to 999.9
DPt 100വ 1
-200 to 650 -328 to 1202
DPt 100വ 0.1 L -199.9 to 650.0 -199.9 to 999.9

Input types
Display Temperature range
(ഒ) Temperature range
(ഘ)
Nickel 120വ 1 NI1 -80 to 200 -112 to 392

Analog

Voltage 0 to 10V V1

-1999 to 9999
(Display point will be changed according to decimal point position)
0 to 5V V
1 to 5V V
0 to 100mV MV1

Current 0 to 20mA M 1
4 to 20mA M
ೈ1. & (77): 6DPH WHPSHUDWXUH VHQVRU DV IRUPHU :5 (77).
ೈ2. *(77): 6DPH WHPSHUDWXUH VHQVRU DV IRUPHU : (77).

Temperature sensors are to convert subject temperature to electrical signals for the temperature controller allowing it to control output.
SV (Setting Value) can only be set within the input range and do not set over the input range.

6.1.2 Input type [ R ൺ IN-T]
This product supports multiple input types, making it possible for the user to choose from thermocouples, resistors, and analog voltage/current.
If you change the input specification, the SV’s upper/low-limits are automatically set to the new specification’s max/min values for temperature sensors. As for analog inputs, analog upper/lower input values are set to the max/min temperature range and the SV upper/low-limits set to upper/lower scale values. Therefore, you need to reconfigure the settings.

Setting group Parameter Setting range Factory default Unit
R IN-T Refer to 6.1.1. Input types and temperature Ca –

6.1.3 Sensor temperature unit [ R ൺ NIT]
When selecting the input temperature sensor, you can set the desired units (ഒ, ഘ) of temperature/scale value to be displayed.

Setting
group Parameter Setting range Factory
default Unit
R NIT ?C / ?F ?C –

This parameter will not be displayed if analog input has been selected.

6.1.4 Analog input/scale value
With analog input selected, you can set the analog input range (high/low limit input values) and the display scale (high/low limit scale values) within the designated input range.
The decimal point positions remain fixed when configuring the high/low limit input values. You can change the input values at V1: 00.00, V / V : 0.000, MV1: 000.0, M 1/ M : 00.00 decimal points.
If the upper and lower limit scale settings are identical, RRflashes twice and setting mode is displayed.
For analog input, —5% of the set high/low limit input value is extended. Analog output is also extended compairing input value. (For temperature sensor input, —5% extension is applied within the temperature range.)

No. PV Display
£ —5% section Flashes PV
¤ —5 to 10% section Flashes or LLLL
¥ 2YHU —10% section Flashes O N

This parameter is not displayed for temperature sensor input.
6.1.4.1 Low-limit input value [ R ൺ L-R ]
You can set the low limit input values for actual use within the analog input range.

Setting
group Parameter Setting range Factory
default Unit
R L-R Minimum temperature range to high-limit input value [ -R] – F.S. 10% ) –
6.1.4.2 High-limit input value [ R ൺ -R ]
You can set high limit input values for actual use within the analog input range.

Setting
group Parameter Setting range Factory
default Unit
R -R Low-limit input value [L-R] + F.S. 10% to maximum temperature range 1) –

6.1.4.3 Scale decimal point position [ R ൺ OT]
You can set the decimal point positions for present value (PV) and set value(SV) within high and low limit scale values.

Setting
group Parameter Setting range Factory
default Unit
R OT / ) / ) / ) ) –
6.1.4.4 Low-limit scale value [ R ൺ L- C]
You can set the display scales of low-limit values for analog input [L-R ]. (Based on the decimal point position setting.)

Setting
group Parameter Setting range Factory
default Unit
R L- C ` to ) –
6.1.4.5 High-limit scale value [ R ൺ – C]
You can set the display scales of high-limit values for analog input [ -R ]. (Based on the decimal point position setting.)

Setting
group Parameter Setting range Factory
default Unit
R – C ` to 1 ) –
6.1.4.6 Display unit for front panel [ R ൺ NT]
When you select an analog input type, you can set the display units.

Setting
group Parameter Setting range Factory
default Unit
R NT ?C / ?F / ?/O / OFF ?/O –

Setting Parameter description
?C Sets the display unit to ഒ and turns on the ഒ of front unit indicator.
?F Sets the display unit to ഘ and turns on the ഘ of front unit indicator.
?/O Sets the display unit to % and turns on the % of front unit indicator.
OFF Sets the display unit to an undefined unit. The LED unit indicator will not turn on.

6.1.5 Input correction [ R ൺ IN- ]
This feature is used to compensate for input correction produced by thermocouples, RTDs, or analog input devices, NOT by the controller itself.
The Input correction function is mainly used when the sensor cannot be attached directly to controlled objects. It is also used to compensate for temperature variance between the sensor’s installation point and the actual measuring point.

Setting
group Parameter Setting range Factory
default Unit
R IN- – to (temperature H, analog)
ഒ/ഘ/-
`( to ( (temperature L)

If the controller displays 78ഒ when the actual temperature is 80ഒ, set the input correction [IN-
] as ‘ ’ in order to adjust the controller’s display temperature to 80ഒ.
If present value after input correction is out of the input range by each input sensor, it displays ‘ ’ or ‘LLLL’.
Make sure that an accurate temperature variance measurement is taken before set values of input correction. An inaccurate initial measurement can lead to greater variance.
Many of today’s temperature sensors are graded by their sensitivity. Since higher accuracy usually comes at a higher cost, most people tend to choose sensors with medium sensitivity. Measuring each sensor’s sensitivity correction for input correction feature in order to ensure higher accuracy in temperature reading.

6.1.6 Input digital filter [ R ൺ M vF]
It is not possible to perform stable control if the present value (PV) fluctuates because of fast changes of input signal. Using the Input digital Filter function can stabilize PV to realize more reliable control.
If the input digital filter is set to 0.4 sec., digital filtering is applied to a sampling value collected over 0.4 sec. (400 ms).

When the input digital filter is used, present value (PV) can vary from the actual input value.

6.1.7 High/Low-limit value of setting value(SV) [ R ൺ – V/ L- V]
You can limit the Set value(SV) range within the temperature range of the temperature sensor or analog input type in order to prevent the system from controlling with improper SV.

Setting
group Parameter Setting range Factory default Unit

R
– V SV low-limit + 1 digit to sensor input high-limit or analog high- limit scale value 1 (temperature)
ഒ/ഘ
) (analog)

L- V Sensor low-limit or analog low- limit scale value to SV high-limit – 1 digit – (temperature)
ഒ/ഘ
1 ) (analog)

Parameter Parameter Description
L- V Set value(SV) low-limit
– V Set value(SV) high-limit

Attempts to set the limits outside the min/max input range, or analog’s high/low-limits, are not accepted. Instead, the previous settings are retained.
Set value(SV) can only be set within the SV low-limit [L- V] and SV high-limit [ – V] range. SV lower-limit [L- V] cannot exceed SV high-limit [ – V].

6.2 Control output

6.2.1 Control output mode [ R ൺ O-FT]
 Control output modes for general temperature control include heating, cooling, and heating & cooling.
 Heating control and cooling control are mutually opposing operations with inverse outputs.
 The PID time constant varies based on the controlled objects during PID control.

Setting
group Parameter Set range Factory
default Unit
R O-FT Standard model: T / COOL T –
Heating/Cooling model: T / COOL / -C -C –
6.2.1.1 Heating control [ R ൺ O-FT ൺ T]
Heating control mode: the output will be provided in order to supply power to the load (heater) if present value (PV) falls below set value(SV).
6.2.1.2 Cooling control [ R ൺ O-FT ൺ COOL]
Cooling control mode: the output will be provided in order to supply power to the load (cooler) if present value (PV) rises above set value(SV).
6.2.1.3 Heating & Cooling control [ R ൺ O-FT ൺ -C]
Heating & Cooling control mode: heating & cooling with a single temperature controller when it is difficult to control subject temperature with only heating or cooling.
Heating & Cooling control mode controls the object using different PID time constants for each heating & Cooling.
It is also possible to set heating & cooling control in both PID control or ON/OFF control mode. Heating/cooling output can be selected among Relay output, SSR drive output and current output depending on model types choosen according to your application environment. (Note that SSR drive output of OUT2 operates standard control.)

For heating & cooling control, OUT1 control output is dedicated to heating control and OUT2 control output to cooling control.

6.2.1.3.1. Dead band/Overlap band [ R ൺ ]
In heating & cooling control, it is possible to designate a dead band between heating & cooling control bands based on set value(SV).
A dead band forms around the SV when positive (+) value is set. No control occurs in the dead band area. Therefore, heating & cooling MVs become 0.0% in the formed dead band.
An overlap band (simultaneous application of heating & cooling MVs) forms around the SV when negative (-) value is set.
Set as 0 when a dead band or an overlap band is not used.
When setting integration time, it is applied when the intengration time of heating control and cooling control is set. In case of PI-P control and P-PI control, it also operates as P-P control.

Setting
group Parameter Setting range Factory
default Unit
R
See below. See below.
 PID/PID, PID/ON-OFF, and ON-OFF/PID Control
 Set range (temperature): -(proportional band) to +(proportional band) (the lower value when using different proportional bands)
 Set range (analog): -99.9 to 099.9
 Factory default: 0000 (temperature H), 000.0 (temperature L, analog), (unit: temperature ഒ/ഘ, analog % F.S.)
 ON-OFF/ON-OFF Control
 Set range (temperature):

-999 (RYHUODS EDQG) WR 0000 (QRW XVHG) WR 0999 (GHDG EDQG) (WHPSHUDWXUH +)
-199.9 (RYHUODS EDQG) WR 000.0 (QRW XVHG) WR 999.9 (GHDG EDQG) (WHPSHUDWXUH /)
 Set range (analog): -99.9 (overlap band) to 000.0 (not used) to 099.9 (dead band)
 Factory default: 0000 (temperature H), 000.0 (temperature L, analog), (unit: temperature ഒ/ഘ, analog % F.S.)

(1) Using a Deadband

6 Parameter Settings and Functions

(2) Using an Overlap Band

6 Parameter Settings and Functions

(3) Using neither a Dead band nor an Overlap Band

Depends on the set value of the heating integration time[ -I], cooling integration time[C-I], actual operation may be different.

6.2.2 MV High/Low-limit value settings [ R ൺ -MV / L-MV]
MV high/low-limit values [ -MV / L-MV] for control output can be configured to the actual MV, provided the temperature controller’s MV calculation exceeds the limits.
During heating & cooling control, cooling MV carries a “-” prefix. Therefore, the high-limit is expressed as a + value on the heating side and the low-limit as a – value on the cooling side.

Parameter Description
L-MV MV Low-limit value setting
-MV MV High-limit value setting

Setting
group Parameter Set range Factory
default Unit

R

-MV Standard Control: MV Low-limit value [L-MV]
+ )1 to 1 ) 1 ) %
Heating & Cooling Control: ) to 1 )
(PID control)
) (OFF)/1 ) (ON) (ON/OFF control)
1 )
%

L-MV Standard Control: ) to MV high-limit value [ -MV] – )1 ) %
Heating & Cooling Control: ` ) to )
(PID control), `) (ON)/ ) (OFF) (ON/OFF control)
`)
%

Same MV limits applied during auto-tuning.
MV limits are not applied to manual control, MV upon control stop, MV upon a sensor error, and initial manual control MV.
MV high/low-limit configuration is not available for ON/OFF control in standard control mode (heating or cooling control).

6.2.3 Ramp settings [ R ൺ R M / R M / r NT]
Ramp is a feature used to configure the slope toward set value(SV). The feature limits change rate of set value(SV) and thereby restricts sudden temperature changes (increase and decrease) in the control subject.
Ramp is commonly used in applications where rapid temperature changes (increase and decrease) could impact negatively on the control subject.

Parameter Description
R M Settings for Ramp-up change rate.
R M Settings for Ramp-down change rate.
r NT Settings for Ramp time unit.

Setting
group Parameter Setting range Factory
default Unit

R
R M to (temperature H, analog),
) to ( (temperature L)

R M to (temperature H, analog),
) to ( (temperature L)

r NT C (seconds), MIN (minutes),
O R (hours) MIN –

Activating the ramp feature when the ramp is not in operation limits the change rate of Set value(SV) based on present value (PV). Changing SV or ramp parameters while the ramp is in operation limits the change rate of SV based on SV at the point of the change.
Control will be carried out based on changed SV (hereinafter referred to as RAMP SV) – changed by preset change rate (slope). RAMP-Up Change Rate and RAMP-Down Change Rate can be configured independently.
Alarm operation during RAMP will be made based on final SV. Setting the rate of ramp change to 0 deactivates the ramp feature.
If the ramp feature has been activated, RAMP SV will be displayed on SV display part. Ramp depending on operation status
Operation Status Ramp Up/Down Ramp
All operations When it is . Inactive
O N, , LLLL, Auto-tuning, Switching from Auto to Manual, Switching from Run to Stop Irrespective of conditions. Inactive
O N, , LLLL, After Auto-tuning completed, PV
= SV Irrespective of conditions. Inactive
Power On, SV Change, Switching from Stop to Run, Switching from Manual to Auto, Ramp Rate Change When it is not . Active

Ramp operation graph

6.2.4 Auto/Manual control settings
Auto control mode is to make temperature reach SV with MV calculated by PID control. Manual control mode is to make temperature reach SV with user’s defined MV.
When in manual control mode, parameter settings can only be viewed and cannot be modified (except for lock parameters). When digital input terminal function is set as Auto/Manual control, the key (the key for TK4N, TK4S, TK4SP) and the Auto/Manual swithcing by communication do not operate. When the unit is powered on following a power interruption or shutdown, previous control mode (auto or manual) will be maintained.
If switching to manual control during Auto-tuning, Auto-tuning will be terminated. It is still possible to switch to manual control mode while in STOP. When a sensor break alarm [ ] occurs in standard control mode, the sensor error MV [ rMV] is applied. In this state, manual and auto control MV settings can be modified. It is still possible to switch auto/manual control mode while in controlling operation.
Operation Priority: Manual Control > Stop > Open (Sensor Disconnection)
6.2.4.1 Manual/Auto control switching
(1) Manual control switching for standard control (heating or cooling control)
 ཰, ུ: When in RUN mode, press the key (the key for TK4N, TK4S, TK4SP model) and it enters MV monitoring mode. The SV display shows (heating control) or C (cooling control), and shows MV to indicate the start of MV monitoring.
 ཱ, ཱུ: If the is pressed when MV monitoring is in progress, the MAN indicator comes on and the lowest digit (100 digit) starts to flash, indicating activation of manual control.
 ི, ྲྀ: Press the key to change the flashing digit (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100).

 ཱི, ཷ: Select the digit and configure the desired MV value using the keys moving to 0ൺ1ൺ2ൺ3ൺ4ൺ5ൺ6ൺ7ൺ8ൺ9ൺ0 by the keys.
 ླྀ: In ཰ to ཷ status, press the key(the key for TK4N, TK4S, TK4SP model) to end manual control. The MAN indicator goes off and the system reverts to auto control mode.
(2) Manual control switching for heating & cooling control
 ཰: When in RUN mode, press the key (the key for TK4N, TK4S, TK4SP model) and it enters heating MV monitoring mode. The SV display shows ‘ ’ and shows MV to indicate the start of heating MV monitoring.
 ཱ: If the is pressed when heating MV monitoring is in progress, the MAN indicator comes on and the lowest digit (100 digit) starts to flash, indicating activation of manual control.
 ི: Press the key to change the flashing digit (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100).
 ཱི: Select the digit and configure the desired MV value using the keys moving to 0ൺ1ൺ2ൺ3ൺ4ൺ5ൺ6ൺ7ൺ8ൺ9ൺ0 by the keys.
 ུ: In ཰ to ཱི status, press the key( key for N, S, SP model) and it enters cooling MV monitoring mode. The SV display shows ‘C’ and shows MV to indicate the start of cooling MV monitoring.
 ཱུ: If the is pressed when cooling MV monitoring is in progress, the lowest digit (100 digit) starts to flash.
 ྲྀ: Press the key to change the flashing digit (100 ൺ 101 ൺ 102 ൺ 103 ൺ 100).
 ཷ: Select the digit and configure the desired MV value using the keys moving to 0ൺ1ൺ2ൺ3ൺ4ൺ5ൺ6ൺ7ൺ8ൺ9ൺ0 by the keys.
 ླྀ: In ུ to ཷ status, press the key(the key for TK4N, TK4S, TK4SP model) to end manual control. The MAN indicator goes off and the system reverts to auto control mode.

After heating & cooling control, the system reverts to auto control in sequence of heating monitoring, manual heating control, cooling monitoring, and manual cooling control.
Heating MV remains in effect during cooling monitoring and manual cooling control.
TK4N/S/SP (W48ŐH48mm) does not have the key. Press the key once to change between auto and manual controls.
If the digital Input [ I-1, I- ] feature has been set for AUTO/MANUAL, the key ( the key for TK4N, TK4S and TK4SP model) key located on the front and automatic/manual control functions via communication do not act.
(3) Manual/Auto Control switching with the digital input (DI) terminal
If the digital Input (DI) feature has been configured for manual/auto control switching, turn on the DI to activate manual control (MAN indicator goes on) and turn off the DI to activate auto control. If the digital Input feature is automatic control status, you can be only to monitor. In case it is manual control status, modifying MV and monitoring are possible.

See 6.7.4 Digital input, for detailed information on digital Input (DI) terminal settings. When MV parameter is masked, MV parameter cannot be monitored and changed.

6.2.4.2 Baseline MV for manual control [ R ൺ I MV]
When switching from auto control [ TO] to manual control [ rM ] you can set the initial MV.
 TO: Controlling with auto control MV as an initial MV for manual control
 rMV: Controlling with preset manual MV [ rMV] as an initial MV.

Auto-MV[ TO] Preset MV[ rMV]

Setting
group Parameter Setting range Factory default Unit
R I MV TO / rMV TO –

When re-supplying the power, it controls with the MV which is at the power OFF.
6.2.4.3 Initial MV for manual control [ R ൺ rMV]
If the baseline MV for manual control is configured to rMV (Preset Manual MV), you can set the initial MV for manual control.

Setting
group Parameter Setting range Factory
default Unit

R

rMV
Standard control ON/OFF
control ) (OFF)
/1 ) (ON)

)

%
PID
control ) to1 )

Heating & Cooling control
ON/OFF
control `) (Cooling ON)
/ ) (OFF)
/1 ) (Heating ON)
PID
control `) (Cooling) to
) (OFF) to
1 ) (Heating)

When in heating & cooling control mode, a setting between )1 and 1 ) will be applied as heating MV and a setting between )1 and ` ) will be applied as cooling MV.

6.2.5 Output settings
6.2.5.1 Control output (OUT1/OUT2) selection [ R ൺ O T1/O T ]
 In case of selecting the Models with current control output, both current and SSR drive outputs are available. You can therefore choose the right output type depending on application environments.
 O T1: Selects OUT1 control output.
 O T : Selects OUT2 control output.

Setting
group Parameter Setting range Factory
default Unit

R O T1
R / C RR
R

O T
6.2.5.2 SSRP function [ R ൺ O! R]
SSRP function of SSR drive output is selectable one of standard ON/OFF control, cycle, phase control. By parameter setting, standard SSR drive is available. Also, cycle control connecting with a zero cross turn-on method SSR, phase control connectiong with a random turn-on method SSR are available.
Realizing high accuracy and cost effective temperature control with both current output (4-20mA) and linear output(cycle control and phase control).
(1) Standard ON/OFF control [ TN ]
A mode to control the load in the same way as Relay output type.(ON: output level 100%, OFF: output level 0%)

(2) Cycle control [C CL]
A mode to control the load by repeating output ON / OFF according to the rate of output within setting cycle. Having improved ON / OFF noise feature by Zero Cross type.

(3) Phase control [ ]
A mode to control the load by controlling the phase within AC half cycle. Serial control is available. Random turn-on SSR must be used for this mode.

Setting
group Parameter Setting range Factory
default Unit
R O! R TN / C CL/ TN –

 Make sure that SSRP function is not available for OUT2. In case of current type models, SSR is fixed to standard output [ TN ] only.
 When selecting cycle output [C CL] or phase output [ ], the power supply for the load and temperature controllers must be the same.
 In case of selecting SSRP function whether cycle output [C CL] or phase output [ ] with PID control type, control cycle is not available to set.
6.2.5.3 Current output range settings [ R ൺ O!M /O M ]
If the control output is set to current output, you can select upper and low-limit range for the current output as either 4-20mA or 0-20mA.
 O!M : Sets OUT1’s current output range.
 O M : Sets OUT2’s current output range.
This parameter is only available on models supporting current output [O T1, O T ].

6.3 Temperature control

6.3.1 Temperature control mode [ R ൺ C-M ]
You can choose the type of temperature control method.

Setting Description
Heating Cooling
Standard Control I PID control
ONOF ON/OFF control
Heating & Cooling Control
PID control PID control
ON PID control ON/OFF control
On ON/OFF control PID control
OnON ON/OFF control ON/OFF control

Setting
group Parameter Setting range Factory
default Unit

R

C-M Standard Control I / ONOF I


Heating &
Cooling Control
/ ON / On / OnON

6.3.2 ON/OFF control [ R ൺ C-M ൺ ONOF]
Controls the temperature by comparing present value (PV) with set value(SV) and turning power to the load on or off.
6.3.2.1 Hysteresis [ R ൺ / OFT/ / OFT]
Hysteresis is to adjust control output ON/OFF point in ON/OFF control mode. ON_Hysteresis sets the output on point and OFF_Offset sets the off point.
Setting hysteresis too low can result in hunting induced by disturbance (noise, chattering, etc.). To minimize hunting, set ON_Hysteresis and OFF_Offset values with consideration to the heater or cooler’s capacity and thermal characteristics, the control subject’s response characteristics, the sensor’s response characteristics and installation conditions, and other defining factors.

Parameter Description

Configures ON_Hysteresis for heating control.
OFT Configures OFF_Offset for heating control.

Sets ON_Hysteresis for cooling control.
OFT Sets OFF_Offset for cooling control.

Setting
group Parameter Setting range Factory
default Unit

R
Temperature H, Analog: 1 to1 Temperature L: )1 to1)

ഒ/ഘ/-

OFT Temperature H, Analog: 1 to1 Temperature L: )1 to1)

OFT

6.3.3 PID control [ R ൺ C-M ൺ I ]
PID control is a combination of proportional (P), integral (I), and derivative (D) controls and offers superb control over the control subjects, even with a delay time.
Proportional control (P) implements smooth,
hunting-free control; integral control (I) automatically corrects offsets;
and derivative control (D) speeds up the response to disturbance. Through these actions, PID control realizes ideal temperature control.

Applied PID Control Technique

 Proportional Control (P): Select PID control and set the integral and derivative time to .
 Proportional Integral Control (PI): Select PID control and set the derivative time to .
 Proportional Derivative Control (PD): Select PID control and set the integral time to .
 Multi SV: Use the same PID time constant for the values of V to V .
6.3.3.1 Proportional band settings [ R ൺ – /C- ]
When present value (PV) is within the Proportional Band (P), the ON/OFF ratio needs to be adjusted during the proportional period (T). The defined proportional control (time proportional control) section is called as the proportional band.

Parameter Description
- Heating proportional band
C- Cooling proportional band

Setting
group Parameter Setting range Factory
default Unit

R - )1 to (
1) Temperature: ഒ/ഘ
Analog: %
C-
6.3.3.2 Integral time settings [ R ൺ -I/C-I]
MVs from integral and proportional operation become the same when deviation is consistent. The time taken for the two MVs to match is called the integral time.

Parameter Description
-I Heating integral time
C-I Cooling integral time

Setting
group Parameter Setting range Factory
default Unit

R -I
to

Sec
C-I

Integral control is not conducted if the integral time is set to 0.
Setting the integral time too short can intensify correction movements and cause hunting.
6.3.3.3 Derivative time settings [ R ൺ – /C- ]
In accordance with the deviation of the ramp, the time taken for the MV gained from derivative operation to reach the MV gained from proportional control is called the derivative time.

Parameter Description
- Heating derivative time
C- Cooling derivative time

Setting
group Parameter Setting range Factory
default Unit

R -
to

Sec
C-

Derivative control is not conducted if the derivative time is set to 0.
6.3.3.4 Control period settings [ R ൺ -T/C-T]
If relay or SSR is used to output MV under proportional control, the output is on for a fixed amount of time (within the control period, as a percentage of the MV) and then remains off for the rest of the time. The preset period when output ON/OFF takes place is called the proportional control period.
Control with SSR drive output has a faster response than that of relay output. Therefore, by configuring a shorter control period, more responsive temperature control is achieved.

Parameter Description
-T Heating control period
C-T Cooling control period

Setting
group Parameter Setting range Factory default Unit
Relay, SSR drive
-T output(ON/OFF control,

R phase control, cycle
control): )1 to1 ) Current output, SSR drive output: )1 to1 ) Relay output: )
SSR drive output:
Sec

C-T

If using heating & cooling control, configure each control period separately for heating & cooling.

6.3.3.5 Offset correction/Manual reset settings [ R ൺ R T]
When selecting P / PD control mode, there are certain temperature differences even after PV reaches stable status since heater’s rising and falling time is inconsistent due to thermal characteristics of control objects, such as heat capacity and the heater capacity. This temperature difference is called OFFSET. Offset can be corrected using manual reset.

Setting
group Parameter Setting range Factory
default Unit
R R T ) to 1 ) ) %
(1) Manual Reset Adjustments based on Control Results
Under stable control conditions, set the offset to 50% if PV and SV are identical, to over 50.0% if PV is lower than SV, and to below 50.0% if PV is higher than SV.

The offset correction feature can only be used when proportional control is in effect. If setting the integral value to 0, the manual reset parameter will be displayed.
The user cannot configure the manual reset setting during heating & cooling control. Instead, the setting is automatically set to 0% for both heating & cooling.
Applicable only when integral time is set to 0 under P control or PD control only.
Switching from heating & cooling control to standard control (P, PD control) automatically configures the reset setting to 50%.

6.3.4 Auto-tuning
Auto tuning measures the control subject’s thermal characteristics and thermal response rate, and then determines the necessary PID time constant. (When control type [C-M ] is set as PID, it is displayed.)
If error [O N] occurs during auto tuning, it stops this operation automatically.
To stop auto tuning, change the set as OFF. (It maintains P, I, D values of before auto tuning.)
6.3.4.1 Auto-tuning start/stop setting [ R ൺ T]
 Auto-tuning automatically stores PID time constants upon termination. These PID time constants can then be modified by the user to suit their usage environment.
 When auto-tuning is in progress, the AT indicator located on the front of the controller flashes in 1 sec. intervals. When auto-tuning finishes, the AT indicator automatically goes off and the auto-tuning parameter will return to OFF.
 When auto-tuning is in progress and digital input key [ I- ] is STOP(switching RUN/STOP) or AT(auto-tuning RUN/STOP) is set, and digital input terminal function [ I-1,
I- ] is STOP (switching RUN/STOP) or MAN(AUTO/MANUAL control selection), auto- tuning will be automatically ended, if concerned DI is inputted or a sensor disconnection error occurs. (Restored the PID used prior to the auto-tuning session)

Setting Description
OFF Auto-tuning complete.
ON Auto-tuning in progress.

Setting
group Parameter Setting range Factory
default Unit
R T OFF/ON OFF –

Auto-tuning continues to run even if the temperature reading exceeds or falls below the input range.
When auto-turning is in progress, parameters can only be referenced and not altered. Auto-tuning is not available in manual control.
6.3.4.2 Auto-tuning mode settings [ R ൺ T]
Auto-tuning is available in [T N1] mode (based on SV) or [T N ] mode (based on 70% of SV), depending on the baseline value used.

Setting Description
T N1 Auto-tunes and derives a PID time constant based on set value(SV).
T N Auto-tunes and derives a PID time constant based on 70% of set value(SV).

Setting
group Parameter Setting range Factory
default Unit
R T T N1 / T N T N1 –

In cooling control mode, [T N ] mode calculates 70% based at 0. When SV=-100, [T N ] is performed at -70.

6.4 Alarm output
There are three alarms which operate individually. You can set combined qoralarm operation and alarm option. Use digital input setting as [ lR ] or turn OFF power and re-start this unit to release alarm operation.

6.4.1 Alarm operation [ R4 ൺ L-1/ L- / L- ]
Select the desired alarm operation.

Mode Name Alarm operation Description (factory default)
OFF – – No alarm output

VCC

Deviation high-limit alarm

High deviation: Set as 10ഒ

High deviation: Set as -10ഒ If deviation between PV and SV as high limit is higher than set value of deviation
temperature, the alarm output will be ON.
High-limit deviation temperature can be set in L! / L / L .

]] V
Deviation low-limit alarm

Lower deviation: Set as 10ഒ

Lower deviation: Set as -10ഒ If deviation between PV and SV as low limit is higher than set value of deviation temperature, the alarm output will be ON.
Low limit can be set in L!L/ L L/ L .

] V[

Deviation high/low- limit
alarm

Lower deviation: Set as 10ഒ, High deviation: Set as 20ഒ If deviation between PV and SV as high/low limit is higher than set value of deviation temperature, the alarm output will be ON.
High-limit Deviation Temperature can be set in L! / L / L .
Low limit can be set in L!L/ L L/ L .

C ]
Deviation high/low- limit
reverse
alarm

Lower deviation: Set as 10ഒ, High deviation: Set as 20ഒ If deviation between PV and SV as high/low-limit is higher than set value of deviation temperature, the alarm output will be OFF.
High-limit deviation can be set in
L! / L / L .
Low limit deviation can be set in
L!L/ L L/ L .

VCC Absolute value high limit alarm

Alarm absolute value: Set as 90ഒ

Alarm absolute value: Set as 110ഒ If PV is higher than the absolute value, the output will be ON. Alarm’s absolute value can be set in
L! / L / L .

]] V Absolute value low limit
alarm

Alarm absolute value: Set as 90ഒ

Alarm absolute value: Set as 110ഒ If PV is lower than the absolute value, the output will be ON.
Alarm’s absolute value can be set in
L!L/ L L/ L .

L Loop break alarm
– It will be ON when it detects loop break.

Mode Name Alarm operation Description (factory default)

Sensor break alarm
– It will be ON when it detects sensor disconnection.

Heater break alarm
– It will be ON when CT detects heater break.

ȄH: Alarm output ǿ hysteresis [ ǹ. ]

Parameter Description
L-1 Selects alarm output 1 operation mode.
L- Selects alarm output 2 operation mode.
L- Selects alarm output 3 operation mode.

Setting
group Parameter Setting range Factory
default Unit

R4 L-1
OFF / V[[/ ]] V / ] VC / [ V] /
VCC / ]] V / / L / VCC


L- ]] V
L- OFF

6.4.2 Alarm output options [ R4 ൺ L!T/ L T]
Users can select the desired alarm output options.

Setting Mode Description
L- Standard Alarm If it is an alarm condition, alarm output is ON. If it is a clear alarm condition, alarm output is OFF.
L- Alarm latch ೈ1 If it is an alarm condition, alarm output is ON and maintains ON status.

L-C
Standby sequence1ೈ2 First alarm condition is ignored and from second alarm condition, standard alarm operates.
When power is supplied and it is an alarm condition, this first alarm condition is ignored and from the second alarm condition, standard alarm operates.

L- Alarm latch and standby sequence1 If it is an alarm condition, it operates both alarm latch and standby sequence. When power is supplied and it is an alarm condition, this first alarm condition is ignored and from the second alarm condition, alarm latch operates.

L-

Standby sequence2 First alarm condition is ignored and from second alarm condition, standard alarm operates.
When re-applied standby sequence and if it is alarm condition, alarm output does not turn ON.
After clearing alarm condition, standard alarm operates.

L-F

Alarm latch and standby sequence2 Basic operation is same as alarm latch and standby sequence1. It operates not only by power ON/OFF,
but also alarm set value, or alarm option changing. When re- applied standby sequence and if it is alarm condition, alarm output does not turn ON.
After clearing alarm condition, alarm latch operates.
 Condition of re-applied standby sequence for standby sequence 1, alarm latch and standby sequence 1: Power ON
 Condition of re-applied standby sequence for standby sequence 2, alarm latch and standby sequence 2: Power ON, changing set temperature, alarm temperature[ L1, L , L ] or alarm operation[ L-1, L- , L- ], switching STOP mode to RUN mode.
Parameter Description
L!T Selects the operation mode of alarm output 1.
L T Selects the operation mode of alarm output 2.
L T Selects the operation mode of alarm output 3.

Setting
group Parameter Setting range Factory
default Unit

R4 L!T
L-/ L- / L-C / L- / L- /
L-F

L-


L T
L T

If alarm operation is set as loop break alarm [L ], sensor break alarm [ ], or heater break alarm[ ], only standard alarm [ L- ] and alarm latch [ L-C] of alarm option are displayed.

6.4.3 Alarm SV settings [ R1 ൺ L!L/ L! / L L/ L / L L/ L ] You can set alarm output activation values. According to the selected alarm operation, configuration parameters [ Lǿ. / Lǿ.L] will be activated for each setting.

Parameter Description
L!L Low limit value of alarm output 1. Reference value for determining heater burnout.
L! High-limit value of alarm output 1.
L L Low limit value of alarm output 2. Reference value for determining heater burnout.
L High-limit value of alarm output 2.
L L Low limit value of alarm output 3. Reference value for determining heater burnout.
L High-limit value of alarm output 3.

Setting group Parameter Setting range Factory default Unit
L!  (temperature) High/Low-limit deviation: By individual input specification -F.S. to F.S.
 (temperature) Alarm absolute value: By individual input specification within displayed range.
 (analog) High/Low-limit deviation:
~ to Within -F.S. to F.S.
 (analog) Alarm absolute value: By individual input specification within displayed range.
L
L Temperature
R1 :1
Analog –
L!L
:1 )
L L
L L

Changing the alarm operation or options resets the settings to the highest or lowest values that will not trigger output in the new mode.

6.4.4 Alarm output hysteresis [ R4 ൺ ! / / ]
“6.4.1 Alarm operation [ R4 ൺ L-1/ L- / L- ]. “ ” from alarm operation represents the alarm output hysteresis. It is used to set an interval between alarm outputs ON/OFF periods.
Hysteresis can be set for individual alarm outputs (Alarm 1 Hysteresis/Alarm2 Hysteresis).

Parameter Description
! Sets the ON/OFF interval for alarm output 1.

Sets the ON/OFF interval for alarm output 2.

Sets the ON/OFF interval for alarm output 3.

Setting
group Parameter Setting range Factory
default Unit

R4 !
Temperature H, Analog: 1 to 1
Temperature L: )1 to 1 )

1
Temperature: ഒ/ഘ, Analog: Digit

Alarm output hysteresis applies to heater burnout alarm [ ] in the same manner.
This parameter does not appear if Loop Break Alarm [L ] or Sensor Break Alarm [ ] is selected.

6.4.5 Alarm N.O./N.C. [ R4 ൺ !N/ N/ N]
You can set the relay contact method in the event of an alarm output.

Setting Description
NO Normally open
Stays open when normal and closes in the event of an alarm.
NC Normally closed
Stays closed when normal and opens in the event of an alarm.

Parameter Description
!N Select contact type for alarm output 1.
N Select contact type for alarm output 2.
N Select contact type for alarm output 3.

Setting
group Parameter Setting range Factory
default Unit

R4 !N
NO / NC

NO


M
M
Front LED Indicators

Change Alarm trigger Alarm output Front LED
NO
(normally open) OFF Open □ OFF
ON Close ■ ON
NC
(normally closed) OFF Close □ OFF
ON Open ■ ON

6.4.6 Alarm output delay settings [ R4 ൺ !ON / !OF/ ON / OF/ ON / OF]
Alarm output delay can be set to prevent false alarms caused by erroneous input signals resulting from disturbances or noise.
With a preset delay time, alarm output does not turn on for the preset duration. Instead, the concerned alarm indicator on the front will flash in 0.5 sec. intervals.

Parameter Description

!ON Alarm output 1 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.

!OF Alarm output 1 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present.

ON Alarm output 2 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.

OF Alarm output 2 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present.

ON Alarm output 3 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.

OF Alarm output 3 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present.

Setting group Parameter Setting range Factory default Unit

R4 !ON

to

Sec.
!OF
ON
OF
ON
OF

6.4.7 Loop break alarm(LBA) [ R4 ൺ L-1/ L- / L- ൺ L ]
Diagnoses the control loop by monitoring the control subject’s temperature changes and sends out alarms if necessary.
 Heating control: When control output MV is 100% or high limit [ -MV] and PV is not increased over than LBA detection band [L a ] during LBA monitoring time [L aT], or when control output MV is 0% or low limit [L-MV] and PV is not decreased below than LBA detection band [L a ] during LBA monitoring time [L aT], alarm output turns ON.
 Cooling control: When control output MV is 0% or low limit [L-MV] and PV is not increased over than LBA detection band [L a ] during LBA monitoring time [L aT], or when control output MV is 100% or high limit [ -MV] and PV is not decreased below than LBA detection band [L a ] during LBA monitoring time [L aT], alarm output turns ON.
Common causes of LBA output ON

 Sensor error (disconnection, short)
 External controller error (magnet, auxiliary relay, etc.)
 External load error (heater, cooler, etc.)
 Misconnections and disconnections of external network.
If it is not as sensor break/ /LLLL, during auto-tuning/manual control/control STOP/ramp function operation, loop break alarm does not operate.

Type LBA
monitoring time Alarm output
Standard alarm Alarm latch
Initializing Alarm, changing control output operation mode, setting LBA monitoring time/band as 0

Initialize
OFF
OFF
Changing input correction value, set
value Maintains the
present alarm Maintains the
present alarm
Changing MV, stopping control, running auto-tuning OFF Maintains the present alarm
Occurring sensor break alarm, ,
LLLL ON ON

Set alarm operation[ L-̱] as loop break alarm [L ] and you can use loop break alarm.
When executing auto-tuning, LBA detection band [L a ] and LBA monitoring time[L aT] is automatically set based on auto-tuning value.
In case of AT (auto-tuning)/manual control/stop control, loop break alarm [L ] does not operates. When alarm reset is input, it initializes LBA monitoring start time.

6.4.7.1 LBA monitoring time [ R4 ൺ L aT]
You can set the LBA monitoring time to check changes in the control subject’s temperature. Automatically setting with auto-tunning.
 Regardless of alarm operation [ L-̱] (including LBA monitoring time as “0”), after running auto-tuning, the integration timeŐ2 value is saved automatically.
(If SV is out of the range of auto setting, it is set as max. or min. value of auto setting.)
 Except input type changing, re-running auto-tuning, manual setting of LBA monitoring time, it maintains the present SV.
 Auto setting range: to
Setting
group Parameter Setting range Factory
default Unit
R4 L aT to
Sec
6.4.7.2 LBA detection band [ R4 ൺ L a ]
You can set the minimum value of deviation change to decrease during LBA monitoring time. Automatically setting with auto-tunning.
 Except input type changing, re-running auto-tuning, manual setting of LBA monitoring time, it maintains the present SV.
 Regardless of alarm operation [ L-̱] (including LBA monitoring time as “0”), after running
auto-tuning, the integration timeŐ2 value is saved automatically.
(If SV is out of the range of auto setting, it is set as max. or min. value of auto setting.)
 Auto setting range
Temperature L: to 1 ) (unit: ഒ/ഘ) Temperature H: to 1) (unit: ഒ/ഘ) Analog: ) to 1) (unit: %F.S.)

It checks control loop and outputs alarm by temperature change of the subject.
For heating control(cooling control), when control output MV is 100%(0% for cooling control) and PV is not increased over than LBA detection band [L a ] during LBA monitoring time [L aT], or when control output MV is 0%(100% for cooling control) and PV is not decreased below than LBA detection band [L a ] during LBA monitoring time [L aT], alarm output turns ON.

Start to ཰ When control output MV is 100%, PV is increased over than LBA detection band [L a ] during LBA monitoring time [L aT].
཰ to ཱ The status of changing control output MV (LBA monitoring time is reset.)

ཱ to ི When control output MV is 0% and PV is not decreased below than LBA detection band [L a ] during LBA monitoring time [L aT], loop break alarm (LBA) turns ON after LBA monitoring time [L aT].
ི to ཱི Control output MV is 0% and loop break alarm (LBA) turns and maintains ON.
ཱི to ཱུ The status of changing control output MV (LBA monitoring time is reset.)

ཱུ to ྲྀ When control output MV is 100% and PV is not increased over than LBA detection band [L a ] during LBA monitoring time [L aT], loop break alarm (LBA) turns ON after LBA monitoring time [L aT].

ྲྀ to ཷ When control output MV is 100% and PV is increased over than LBA detection band [L a ] during LBA monitoring time [L aT], loop break alarm (LBA) turns OFF after LBA monitoring time [L aT].
ཷ to ླྀ The status of changing control output MV (LBA monitoring time is reset.)

6.4.8 Sensor break alarm [ R4 ൺ L-1/ L- / L- ൺ ]
You can set the controller to send out an alarm when a sensor is not connected or disconnected during temperature control.
Sensor break can be confirmed through an external alarm output contact, such as a buzzer or similar means.
Setting alarm operation [ L-ǹ] to will activate Sensor Break Alarm.
Alarm output option can be set to standard alarm [ L- ] or alarm latch [ L- ].

6.4.9 Heater burnout alarm [ R4 ൺ L-1/ L- / L- ൺ ]
 When using a heater to raise the temperature of the control subject, the temperature controller can be set to detect heater disconnection and send out an alarm by monitoring power supply to the heater.
 Heater disconnection is detected by the controller using a current transformer (CT), which converts the current to the heater to a specific ratio (CT ratio) for monitoring. If the heater current value [CT- ] measured by the CT is less than the heater detection set value
[ Ḻ.L], the heater burnout alarm will activate.

 Heater burnout detection only takes place when the temperature controller’s output is turned on. Otherwise, heater burnout will not be detected by the controller.
 Detection is only available in models with switching output (Relay output, SSR drive output). Models with linear output (current, SSR drive cycle/phase output) are incapable of detection.
 Current detection is not performed if OUT1’s control output time is less than 250ms.
 It is recommended to use Autonics designated current transformer (for 50A).
 Alarm output option can be set to standard alarm [ L- ] or alarm latch [ L- ].
 In the case of TK4SP models, heater burnout alarm [ ] mode is not available.
6.4.9.1 Heater burnout detection settings [ R1 ൺ L!L/ L L/ L L]
Set the alarm output value [ Ḻ.L] as the reference value for heater burnout detection.

Setting
group Parameter Setting range Factory
default Unit

R1 L!L
) to )

)

A
L L
L L

Set to ) for OFF. Set to ) for ON.
Setting Value Calculation
: Heater Burnout Setting Value = {(Normal Heater Current) + (Heater Burnout Current)}/2

If using a single output heater (Capacity: 200VAC, 1KW, 5A), normal heater current is 5A, and burnout heater current is 0A, the set value is calculated as (5A + 0A)/2 = 2.5A. Therefore, heater current values less than 2.5A will be deemed heater burnout and the alarm will activate.
When two output heaters (Capacity: 200VAC, 1KW, 5A) are used, normal heater current is 10A (5A ×2). If a single heater burns out, the heater current becomes 5A. The set value is calculated as (10A + 5A)/2 = 7.5A). Heater current values of less than 7.5A are deemed heater burnout and the alarm activates.

6.4.10 Alarm output deactivation [ R ൺ I- ൺ lR ]
Available only if alarm output option is set to alarm latch or alarm latch and standby sequence1, alarm latch and standby sequence2. It can be set to turn OFF alarm output when alarm output is ON, alarm output conditions have been removed, or an alarm output deactivation signal that is greater than the minimal signal band is received. (However, alarm output deactivation is unavailable when alarm conditions remain in effect.)
You can assign the front panel’s digital input key or the digital input terminals (DI-1, DI-2) for the alarm output deactivation feature.(regardless of parameter mask)
(1) Deactivating alarm output using digital input key
If the digital input key has been assigned for alarm output deactivation and the alarm output option is set to alarm latch or alarm latch and standby sequence, press and hold the front panel’s keys when alarm output is on.

For detailed information on digital input key settings, see 6.7.4.2 Digital input key.
(2) Deactivation of alarm output using digital input (DI) terminal
When the digital input (DI) terminal is assigned to alarm (output) OFF, the alarm output will deactivate when digital input (DI) terminal goes into the on state (close). (the MAN indicator turns ON).

For detailed information on digital Input (DI) key configuration, see ‘6.7.4.2 Digital input key’. For detailed information on digital Input (DI) terminal configuration, see ‘6.7.4.1 Digital input
terminal settings [ R ൺ I-1/ I- ]’.
After deactivating the alarm output, it will function normally for the next alarm output occurrence.

6.4.11 Alarm output examples
6.4.11.1 Absolute value high-limit alarm and deviation high-limit alarm
6.4.11.2 Absolute value low-limit alarm and deviation low-limit alarm

6.4.11.3 Deviation high/low-limit alarm
6.4.11.4 Deviation high/low-limit reverse alarm

6.4.11.5 Deviation high/low-limit alarm (hysteresis overlap)

6.5 Analog transmission

6.5.1 Analog transmission output value settings [ R4 ൺ M1/ M ]
Transmission output is a type of auxiliary output that converts the controller’s present value, set value, heating MV, cooling MV to analog current (DC 4 to 20mA) for external transmission.

Setting Description
V PV transmission output
V SV transmission output
-MV Heating MV transmission output
C-MV Cooling MV transmission output

Setting
group Parameter Setting range Factory
default Unit
R4 M1 V / V / -MV / C-MV V –
M

When using standard control mode of OUT2 current output model , OUT2 current output is available as transmission output 2. For transmission output model, [ M1] is activated. For standard control mode of OUT2 current output model, [ M ] is activated.
This parameter is activated in transmission output models only. Transmission output is constant current output. Too great a resistance from the load can cause the output value to change.There is no optional output below 4mA or above 20mA.

6.5.2 Transmission output high/low-limit value settings [ R4 ൺ F L1/ F 1ൺ F L / F ]
If the transmission output value [ Mǹ] is below the transmission output low-limit [F Lǹ], 4mA output will be provided. If the transmission output is between the low-limit [F Lǿ] and high-limit [F ǿ], a certain proportional output within the range 4mA and 20mA will be provided. If it is
above the high-limit [F ǿ], 20mA output will be provided.

Setting Description
F L1 Sets the low-limit of transmission output (4mA).
F L
F 1 Sets the high-limit of transmission output (20mA).
F

Setting
group Parameter Setting range Factory
default Unit

R4

FL1
FL V Temperature: usage range Analog: high/low scale range

-

digit
V SV low-limit value [L- V] to SV high-limit value [ – V]
-MV /C-MV ) to 1 )

F 1 F V Temperature: usage range Analog: high/low scale range

1
V SV low-limit value [L- V] to SV high-limit value [ – V]
-MV / C-MV ) to 1 )

If transmission output high-limit [F ǿ] is transmission output low-limit [F Lǿ], the transmission output is 4 mA.
(1) Present value (PV) transmission output
PV within sensor range or upper/low-limit scale can be converted and transmitted as current within the range of 4 to 20 mA.

(2) Set value (SV) transmission output
SV within sensor range or upper/low-limit scale can be converted and transmitted as current within the range of 4 to 20 mA. When ramp is in effect, ramp SV is transmitted step by step.

(3) Heating MV/Cooling MV transmission output

6.6 Communication settings
This feature is used for external higher systems (PC, GP, etc.) to set the controller’s parameters and to monitor the controller. It can also be used to transmit data to external devices.
No redundant unit addresses may exist along the same communication line. The communication cable must be a twist pair that supports RS485.
 Interface

Category Description
Standards EIA RS485-compliant
Max. Connections 31 units (Addresses: 01 through 99)
Communication Two-wire, half duplex
Synchronization Asynchronous
Valid Communication Distance Max. 800 m
BPS (bits per second) 2400, 4800, 9600, 19200, 38400 bps
Response Standby 5 ms to 99 ms
Communication Start Bit 1 bit (fixed)
Data Bit 8 bit (fixed)
Communication Parity Bit None, Even, Odd
Communication Stop Bit 1, 2 bit
Protocol Modbus Remote Terminal Unit (Character = 11 bit as fixed)

You could modify the parameter (first in, first out) using keys during communication connection, but this may lead to errors and malfunctions.

6.6.1 Unit address settings [ R4 ൺ R ]
You can assign individual addresses to data units.

Setting
group Parameter Setting range Factory
default Unit
R4 R 1 to 1 –

6.6.2 BPS (bits per second) settings [ R4 ൺ ]
You can set the rate of data transmission.

Setting group Parameter Setting range Factory default Unit
R4
4(2400 bps) / 48(4800 bps) / (9600
bps) / 1 (19200 bps) / 84(38400 bps)
bps

6.6.3 Communication parity bit [ R4 ൺ RT ]
Parity bit is a data communication method that adds an additional bit to each character in transmitted data as an indicator used to verify data loss and corruption. This parameter is used to enable or disable the parity bit option.

Setting Description
NON Disables parity bit.
V N Sets the total bits with signal value of 1 as even numbers.
O Sets the total bits with signal value of 1 as odd numbers.

Setting
group Parameter Setting range Factory
default Unit
R4 RT NON / V N / O NON –

6.6.4 Communication stop bit settings [ R4 ൺ T ]
You can set the number of bits to mark the end of a transmitted data string.

Setting Description
1 Sets end of data string to 1 bit.

Sets end of data string to 2 bits.

Setting
group Parameter Setting range Factory
default Unit
R4 T 1 /
bit

6.6.5 Response wait time settings [ R4ൺ R T]
Set a standby time to mitigate communication errors when communicating with a slow master device (PC, PLC, etc.). Once a standby time is set, the controller will respond after the defined standby time.

Setting
group Parameter Setting range Factory
default Unit
R4 R T to
ms

Shorter standby times can cause communication errors in the master device.

6.6.6 Enable/Disable communication write[ R4ൺ COMW]
This feature can change parameter settings stored in memory through communication with PC, GP, PLC, etc., in order to permit or prohibit writing.

Setting Description
n Parameter set/change enable via communication.
I Prohibit parameter setting or modification via communication.

Setting
group Parameter Setting range Factory
default Unit
R4 COMW n / I n –

Reading parameter settings is available even though prohinit parameter setting.

6.6.7 USB to Serial communication connection
Data can be transmitted via a USB-to-serial connection. However, RS485 communication through a USB-to-serial connection is blocked by hardware.

6.7 Additional features

6.7.1 Monitoring
Refer to ‘5.2.3 MV monitoring and manual control’.
6.7.1.1 Control output MV monitoring
Monitors and displays the current control output MV.

6.7.1.1.1. Heating MV monitoring

Displays the current heating MV during heating control or heating & cooling control.Users may manually adjust the MV to control the temperature.

 Measurement range: ) to 1 (Unit: %)
Capable of displaying MV with a moving decimal point ( ( ൺ 1 ).
6.7.1.1.2. Cooling MV monitoring

Displays the current cooling MV during cooling control or heating & cooling control.Users may manually adjust the MV to control the temperature.
 Measurement Range: C ) to C1 (Unit: %)
Capable of displaying MV with a moving decimal point (C ( ൺ C1 ).
6.7.1.2 Heater current monitoring [ R1 㸢 CT- ]
A feature that monitors and displays the current of a heater (load) being controlled by control output.

Setting
Group Parameter Measurement range Unit
R1 CT- ) to ) A

A current transformer (CT) is used to measure and display the heater’s (load) current.

6.7.2 RUN/STOP [ R1 ൺ R- ]
Users may run or stop control output by force while in RUN mode.
The stop command stops control output. Auxiliary output, however, is not affected by the command. This feature can be enabled by configuring parameters. In addition, the front panel’s digital input keys ( for 3 sec.) and digital input terminals (DI-1 and DI-2) can be assigned to the run/stop feature. (regardless of parameter mask)

Setting Description
R N Forced control output run in STOP mode.
TO Forced control output stop in RUN mode.

Setting
group Parameter Setting range Factory
default Unit
R1 R- R N / TO R N –

With stop enabled, the front panel’s SV display indicates TO .
You can change the setting when in the stop state. The stop status will remain in effect after shutting down the controller and powering it back on.
When stop is in effect, STOP MV[ MV] will be output. In case of a sensor break occurring while in STOP, STOP MV[ MV] is output.
The run/stop setting remains in effect after turning power back on.
If the digital Input (DI-1, DI-2) feature has been set for RUN/STOP, RUN/STOP feature by modifying front keys or parameter is unable.
6.7.2.1 Stop control output settings [ R ൺ MV]
This parameter sets the control output value when in the stop state. With ON/OFF control, select between 1 ) (ON) and ) (OFF). With PID control, the user can adjust the MV between
) and 1 ) .

Setting
group Parameter Setting range Factory
default Unit

R

MV
Standard Control ON/OFF
Control ) (OFF) /
1 ) (ON) )

%
PID
Control ) to1 ) )

Heating & cooling Control ON/OFF
Control `) (Cooling ON)
/ ) (OFF) /
1 ) (Heating ON)
)
PID
Control `) (Cooling)to
1 ) (Heating) )

Ignores MV from ON/OFF control or PID control and sends out a control value based on the defined MV.

6.7.2.2 Stop alarm output [ R ൺ L]
Enable or disable alarm output upon a stop.

Setting Description

OFF Alarm output ceases along with a stop under all conditions. (However, reverting to RUN mode after a stop in alarm latch or alarm latch and standby sequence restores the alarm output to
the previous state.)
CONT Alarm output continues regardless of control operation.

Setting
group Parameter Setting range Factory
default Unit
R1 R- CONT / OFF CONT –

6.7.3 Multi SV
Multi SV function allows users to set multiple SVs and save each setting in V to V . Users can change V-N or select desired SV using external digital input terminal (digital input, DI-1, DI-2) function.
This feature supports up to four SVs which can be independently configurable.
6.7.3.1 Number of Multi SVs [ R ൺ M V]
This parameter sets the number of Multi SVs. Select the number of Multi SVs required by the control subject.

Number of SVs SV Assignment
1 V-

V- , V-1
4 V- , V-1, V-, V-

Setting
group Parameter Setting range Factory
default Unit
R M V 1 / / 4 1 Number of SVs

If the digital Input (DI-1, DI-2) feature has been set for multi SV [M V], the number of Multi SV is not modified through pressing key or communication.(regardless of parameter mask)
6.7.3.2 Multi SV No. selection [ R1 㸢 V-N]
Select the SV to control.

Setting
group Parameter Setting range Factory
default Unit
R1 V-N V-/ V-1 / V- / V- V- –

The range of figures assigned to each SV (SV No.) varies depending on the number of Multi SVs [M V] setting.

6.7.3.3 Multi SV settings [ R1 ൺ V- / V-1/ V- / V- ]
Designate the value of each SV for Multi SVs.

Setting
group Parameter Setting range Factory
default Unit

R1 V-

Setting value low-limit [L- V]
to Setting value high-limit [ – V]

ഒ,ഘ,-
V-1
V-
V-

6.7.4 Digital input
6.7.4.1 Digital input terminal settings [ R ൺ I-1/ I- ]
By connecting an external input to a digital input terminal, you can perform preset digital input terminal functions.

Setting Description
OFF No function
TO Run/Stop
lR Alarm output deactivation
M N Auto/manual control selection
T Auto-tuning start
M V Multi SV selection
In the case one of DI-1 or DI-2 being set for Multi SV[M V], V- is selected as the SV if the terminal’s external contact signal is off and V-1 is selected if the signal is on.
If both DI-1 and DI-2 are configured for Multi SV[M V], you can select the SV using combinational logic of the terminals. If multi SV [M V] are changed from 4 to 2, DI-2 will be turned OFF automatically, changed from 4 to 1, both DI-1 and DI-2 will be turned OFF or changed from 2 to 1, concerned DI will be OFF.

DI-1 DI-2 Multi SV No.
OFF OFF V-
ON OFF V-1
OFF ON V-
ON ON V-

Setting
group Parameter Setting range Factory
default Unit

R I-1
OFF / TO / lR / M N / M V
OFF

I-

When powered on, the digital input feature checks always the settings of terminal input. Multi SV parameter will be activated only if Multi SV is more than 2.
The TK4SP Series has a limited number of terminal blocks and does not feature a digital input terminal. Therefore, the digital input terminal functions are not available.
TheTK4S, M Series has a limited number of terminal blocks. Therefore, the digital input terminal1 (DI-1) is available. (In case of TK4S-D4 ǹǹ, only DI-1, DI-2 are available)

Digital input terminal function operates irrespective of 6.7.7 Lock , 6.7.9 Password settings [ R ൺ W ], 8.3.1 Parameter mask.
6.7.4.2 Digital input key
With digital input key enabled in RUN mode, press and hold keys at the same time for 3 sec. to activate the preset function.

6.7.4.2.1. Digital input key settings [ R ൺ I- ]
In order to use the digital input key feature, each function has to be first assigned to the keys.

Setting Description
TO RUN/STOP
lR Forced alarm output deactivation
T Auto-tuning RUN/OFF(in case of control method is PID control)
OFF Not using digital input key

Setting
group Parameter Setting range Factory
default Unit
R I- TO / lR TO –

If the digital input key and the digital input terminal set equally, the digital input key does not act.

6.7.4.2.2. Digital input key use

Press the digital input keys on the front panel to execute the function assigned to the keys.

When in RUN mode, press and hold + keys for 3 sec. to execute the assigned function (run/stop or alarm output deactivation).
If the same function is assigned to a digital input key and the digital input terminal, activation takes place as an “or” function and deactivation as an “and” function. (However, this does not apply to the Multi SV feature of digital input terminals.)

Digital input key functions operate irrespective of 6.7.9 Password settings [ R ൺ W ], 8.3.1 Parameter mask.

6.7.5 Error
The controller diagnoses input signals for errors and displays messages accordingly. These messages inform the user of device problems.

Message Input Description Output

Temperature sensor Flashes at 0.5 sec. intervals if the input value is above the input range. Standard type:
Heating: 0%, Cooling: 100% Heating&Cooling:
Heating: 0%, Cooling: 100%

Analog Flashes at 0.5 sec. intervals if the input value is over 5 to 10% of high limit or low limit value.
Normal output

LLLL
Temperature sensor Flashes at 0.5 sec. intervals if the input value is below the input range. Standard type:
Heating: 100%, Cooling: 0% Heating&Cooling:
Heating: 100%, Cooling: 0%

Analog Flashes at 0.5 sec. intervals if the input value is over 5 to 10% of low
limit or high limit value.
Normal output

O N Temperature sensor Flashes at 0.5 sec. intervals in the event of an input disconnection.
Outputs the set MV at rMV
Analog Flashes at 0.5 sec. intervals if F.S.
is over —10%.

RR Temperature sensor Flashes at 0.5 sec. intervals if there is error for setting and it returns to the error-before screen.

When input value returns to the input range, alarm is deactivated and it operates normally.
When in heating control mode and powered on, or standard control state, output is 0% if is displayed and 100% if LLLL is displayed.
When in cooling control and powered on (or standard control state), output is 100% if is displayed and 0% if LLLL is displayed.
When in heating & cooling control and powered on or standard control state, heating output is 0% and cooling output 100% if is displayed, and heating output is 100% and cooling output 0% if LLLL is displayed.
6.7.5.1 MV Settings upon sensor break error [O N](MV for Error) [ R ൺ rMV]
In the event of a sensor open error you can set control output value to predefined MV instead of ON/OFF control or PID control.
Ignores MV by ON/OFF control or PID control, and sends out a control value based on the defined MV.

Setting
group Parameter Setting range Factory
default Unit

R

rMV
Standard Control ON/OFF
Control ) (OFF)/1 ) (ON)

)

%
PID
Control ) to 1 )

Heating & cooling Control ON/OFF
Control ` ) (Cooling On)
/ ) (OFF)/1 ) (Heating On)
PID
Control ` ) (Cooling) to 1 )
(Heating)

6.7.6 User level setting [ R ൺ R]
You can restrict parameter display by setting user level (standard or high).
When you set as a standard level user, the main function parameters shaded on the entire parameter list(See the 5.3 Parameter group), are only displayed.

Parameter Parameter description
TN Activates standard user parameters
I Activates all parameters

Setting
group Parameter Setting range Factory
default Unit
R R TN / I TN –

6.7.7 Lock settings
6.7.7.1 SV group lock [ R ൺ L V]
You can restrict SV parameter modification by locking SV group parameters, which include SV selection, digital input key ( keys for 3 sec.), (the key for TK4N, TK4S, TK4SP model) key for monitoring and manual control, parameter reset [INIT], etc.

Setting Function
ON Activates SV group lock.
OFF Deactivates SV group lock.

Setting
group Parameter Setting range Factory
default Unit
R L V ON / OFF OFF –
6.7.7.2 Parameter group lock [ R ൺ L 1/L /L /L 4/L ]
Lock or unlock individual parameter groups from parameter 1 group [ R1] to parameter 5 group [ R ].
Even with parameter group lock in place, you can still read parameter settings.
In Parameter 5’s [ R ] case, the settings can still be modified even with a lock [L V/L ̱] initiated.

Parameter Parameter description
ON Lock parameter group
OFF Unlock parameter group

Parameter Parameter description
L 1 Lock parameter 1 group.
L Lock parameter 2 group
L Lock parameter 3 group
L 4 Lock parameter 4 group
L Lock parameter 5 group

Setting
group Parameter Setting range Factory
default Unit
R L 1 to
L ON / OFF OFF –

6.7.8 Parameter reset [INIT]
This function is to reset all parameters in memory to factory defaults.

Press and hold the front panel’s keys for 5 sec. The INIT parameter will be displayed. Select to reset the parameters.

Setting
group Parameter Setting range Factory
default Unit
– INIT / NO NO –

If the password feature is activated, it is required to enter a password to activate this function. Resetting the parameters also resets the password.
If this parameter reset [INIT] is masked, it cannot be used.

6.7.9 Password settings [ R ൺ W ]
Assigning password access to SV group features (excluding digital input key) and Parameter 1 through 5 prevents unauthorized modification to the parameter settings.
Password setting applies to SV group features (excluding digital input key) and Parameter 1 through 5 comprehensively.
Changing the password setting automatically activates password protection. Setting the password to , however, disables password protection.
1 is a read-only password. Under this setting, the user may check parameter settings without knowing the password. The user, however, cannot change parameter settings.
Accessing the W parameter with the read-only password displays a coded form of the setting.
 Settings
1st :KHQ LQ 581 PRGH, SUHVV DQG KROG WKH NH\.
2nd 8VH WKH NH\V WR VHOHFW R DQG WKHQ SUHVV WKH NH\.
3rd 3UHVV WKH NH\ WR VHDUFK W .
4th 6HOHFW WKH GHVLUHG GLJLW XVLQJ WKH NH\.
5th 8VH WKH NH\V WR VHW WKH SDVVZRUG ( , to ) WKHQ SUHVV WKH NH\ WR VHW WKH SDVVZRUG.
6th 5HSHDW VWHSV 4 DQG 5 DQG HQWHU WKH SUHVHW SDVVZRUG.
7th 3UHVV WKH NH\ RU GR QRW PDNH DQ\ DGGLWLRQDO NH\ HQWU\ IRU 3 VHF. WR VDYH WKH SDVVZRUG.

‘6.7.4 Digital input’ features are not affected by password protection settings.

6.7.9.1 Password entry [ ]
If password protection is turned on, accessing SV parameters or groups when the unit is in RUN mode will prompt a password confirmation parameter [ ]. Then, the correct password has to be entered to access the setting parameters.

 Settings
1st $FFHVV 69 SDUDPHWHU RU SDUDPHWHU JURXS.
2nd :KHQ SURPSWHG ZLWK , XVH WKH NH\ WR VHOHFW WKH GHVLUHG GLJLW.
3rd 8VH WKH NH\V WR HQWHU WKH SDVVZRUG ( 1 WKURXJK ) DQG WKHQ SUHVV WKH NH\.
 If the correct password is entered, you can access setting parameters.
 If an incorrect password is entered, repeat steps 2 and 3 and enter the correct password.

Setting group Parameter Setting range Factory default Unit
R
1 (read-only), to 1 –

If the password is unknown, enter 1 to access the parameters in read-only mode.
This parameter only appears if the setting from 6.7.9 Password settings [ R ൺ W ] is set to a value other than .
If an incorrect password has been entered, the SV display section displays a coded form of the password stored by the user and an error message [ RR]. Then, the error message flashes in 1 sec. intervals.
6.7.9.2 Password recovery
Entering an incorrect password displays a coded form of the password on the SV display. Submit this code to Autonics to recover your lost password.
Incorrect Password Entry (For example, the correct password being1 4)
1st $FFHVV 69 SDUDPHWHU RU SDUDPHWHU JURXS.
2nd :KHQ SURPSWHG ZLWK , XVH WKH NH\ WR VHOHFW WKH GHVLUHG GLJLW.
Use the keys to select 4 1(incorrect password) and then press the key.

Entering an incorrect password displays a coded password on the SV display. An RR
message will also appear, flashing at 1 sec. intervals.

7 Setting group parameter description
7.1 Setting group [ V ]

Parameter Description Set range Unit Factory
default
V Set value SV Between L- V and
– V ഒ/ഘ/-

key Digital input Key Execute Digital input execution key Press the keys more than 3 sec.

key Auto_Manual Monitoring/Contr ol MV
monitoring/manua l control execution key
Press the key more than 1 sec.

INIT Parameter initialize Resets parameters to factory defaults
NO /

NO
7.2 MV monitoring/manual control setting group [ MV ]

Parameter Description Set range Unit Factory
default
-MV Heating_MV Heating MV ) to 1 % –
C-MV Cooling_MV Cooling MV C ) to C1 % –
୔It is possible to manually control and monitor heating & cooling MVs at the same time.

7.3 Parameter 1 setting group [ R1 ]

Parameter Description Set range Unit Factory
default
R- RUN_STOP Control Output RUN/STOP R N / TO – R N
V-N Multi SV No. Multi SV number selection V- / V-1 / V-
/ V- – V-
CT- Heater current monitoring Heater current monitoring ) to ) (display range) A –
L!L Alarm1_low Alarm output 1’s low-limit value

Offset Alarm: -F.S. to F.S.
Absolute Value Alarm: Within display range.
L! Alarm1_high Alarm output 1’s high-limit value
L L Alarm2_low Alarm output 2’s low-limit value
ഒ/ഘ/-
1
L Alarm2_high Alarm output 2’s high-limit value.
L L Alarm3_low Alarm output 3’s low-limit value
L Alarm3_high Alarm output 3’s high-limit value.
V- SV-0 set value SV-0 set value Between L- V and
– V ഒ/ഘ/-

V-1 SV-1 set value SV-1 set value Between L- V and
– V ഒ/ഘ/-

V- SV-2 set value SV-2 set value Between L- V and
– V ഒ/ഘ/-

V- SV-3 set value SV-3 set value Between L- V and
– V ഒ/ഘ/-

7.4 Parameter 2 setting group [ R ]

Parameter Description Set range Unit Factory
default
T Auto-tuning execute Auto-tuning ON/OFF OFF/ON – OFF

- Heating_ proportional band Heating proportional band

)1 to (

ഒ/ഘ/%

1)

C- Cooling_ proportional band Proportional band in cooling mode
-I Heating_integr al time Heating integral time
to
Sec

C-I Cooling_integr al time Cooling integral time
- Heating_deriv ation time Heating derivative time
to
Sec

C- Cooling_deriva tion time Cooling derivative time

Dead_overlap band

Heating & cooling control dead band P/P, P/ONOFF, and ONOFF/P Controls
-Proportional Band to 0.0 to
+Proportional Band (if different, based on whichever is
lesser)
ONOFF/ONOFF
Control
– to
(Temperature H)
`( to (
(Temperature L)

Digit

– ( to (
(Analog) %F.S. )
R T Manual reset Manual reset under proportional control ) to1 ) % )

Heating_ON hysteresis Heating hysteresis 1 to1
( )1 to1 ) ) Digit
(

)
O T Heating_OFF offset Heating off point offset to 1
( ) to 1 ) ) Digit

Cooling_ON hysteresis Cooling hysteresis 1 to1
( )1 to1 ) ) Digit
(

)
O T Cooling_OFF offset Cooling off point offset to1
( ) to 1 ) ) Digit

L-MV

MV low-limit

MV low-limit setting ) to -MV-)1
(standard control)
`) to ) (heating & cooling control)

%
)
(`))

-MV
MV high-limit
MV high-limit value L-MV+)1 to 1 )
(standard control)
) to 1 )
% 1 )
(1 ) )

Parameter Description Set range Unit Factory
default
(heating & cooling control)
R M Ramp_up rate Ramp rise rate to
( ) to ( ) Digit

R M Ramp_down rate Ramp down rate to
( ) to ( ) Digit

r NT Ramp time unit Ramp time unit C / MIN / O R – MIN

7.5 Parameter 3 setting group [ R ]

Parameter Description Set range Unit Factory
default
IN-T Input type Input type See Input types chart. – TCa
NIT Unit Sensor temperature unit ?C / ?F – ?C
L-R Low input range Analog low-limit input value Minimum range. to -R – F.S.10% Digit )
-R High input range Analog high-limit input value L-R+F.S.10% to
Maximum range. Digit 1)

OT Scaling decimal point Decimal point position – scale value
/ ) / ) / )

)
L- C Low scaling Scale low-limit display value ` to – )
– C High scaling Scale high-limit display value ` to – 1 )
NT Display unit indicator Front unit display ?C / ?F / ?/O / OFF – ?/O
IN- Input correction Input correction – to
(` ( to ( ) Digit

M vF Input digital filter Moving average digital filter )1 to1 ) Sec )1
L- V SV low-limit SV low-limit value Input Low-limit [L- C] to – V-1digit ഒ/ഘ/% -

– V
SV high-limit
SV high-limit value L- V+1digit to input high-limit [ –
C]
ഒ/ഘ/%
1

O-FT
Control operating type
Control output operation mode Standard T /
COOL

– T
Heating & Cooling type T /
COOL /
-C
-C

C-M

Control method

Temperature control type Standard I /
ONOF

– I
Heating & Cooling type /
ON /
On /
OnON

T Auto-tuning type Auto-tuning mode T N1 / T N – T N1
O T1 Output1 (SSR_Curr) type OUT1 control output type R / C RR – C RR
O! R OUT1 SSR
function OUT1 SSR drive output type TN / C CL/

– TN
O!M OUT1 current range OUT1 current output range 4-/ – – 4-
O T Output2 (SSR_Curr) type OUT2 control output type R / C RR – C RR
O M OUT2 current range OUT2 current output range 4-/ – – 4-

Parameter Description Set range Unit Factory
default
-T Heating_control time Heating control period Relay output, SSR drive output(standard ON/OFF, phase, cycle control):
)1 to 1 ) Current output, SSR drive output:
)1 to 1 ) Sec

)
(Relay)
)
(SSR)

C-T

Cooling_control time

Cooling control period

Sec

7.6 Parameter 4 setting group [ R4 ]

Parameter Description Set range Unit Factory
default

L-1

Alarm1 mode
Alarm output 1 operation mode OFF/
V[[/ ]] V/ ] V[ [ V] /
V[[/ ]] V/ L
/

VCC

L!T
Alarm1 type
Alarm output 1 option/type L-/ L- /
L-C / L- /
L-/ L-F

L-
! Alarm1 hysteresis Alarm output 1 hysteresis 1 to 1
( )1 to1 ) ) Digit 1
!N Alarm1 N.O./N.C. Alarm output 1 N.O./N.C. NO / NC – NO
!ON Alarm1 ON delay time Alarm output 1 ON delay to Sec

!OF Alarm1 OFF delay time Alarm output 1 OFF delay to Sec

L-

Alarm2 mode
Alarm output 2 operation mode OFF/
V[[/ ]] V/ ] V[ [ V] /
V[[/ ]] V/ L
/

]] V

L T
Alarm2 type
Alarm output 2 option/type L-/ L- /
L-C / L-/ L- / L-F

L-

Alarm2 hysteresis Alarm output 2 hysteresis 1 to1
( )1 to1 ) ) Digit 1
N Alarm2 N.O./N.C. Alarm output2 N.O./N.C. NO / NC – NO
ON Alarm2 ON delay time Alarm output 2 ON delay to Sec

OF Alarm2 OFF delay time Alarm output 2 OFF delay to Sec

L-
Alarm3 mode
Alarm output 3 operation mode OFF/ V[[/ ]] V
/ ] V[ / [ V]
/ V[[ / ]] V
/ L / /

OFF

L T
Alarm3 type Alarm output 3 option/type L- / L-
/ L-C / L-
/ L- / L-F

L-

Alarm3 hysteresis Alarm output 3 hysteresis 1 to 1
( )1 to 1 ) ) Digit 1
N Alarm3 N.O./N.C. Alarm output 3 N.O./N.C. NO / NC – NO
ON Alarm3 ON delay time Alarm output 3 ON delay to Sec

OF Alarm3 OFF delay time Alarm output 3 OFF delay to Sec

L aT LBA time LBA monitoring time to Sec

Parameter Description Set range Unit Factory
default

L a

LBA band

LBA detection band. to (temperature H)
ഒ/ഘ/%

) to ((
(temperature L)

) to (
(analog) % )
M1 Analog output mode Analog transmission 1 output value V / V / -MV /
C-MV – V
FL1 Low out scale Transmission output 1 low-limit value
– -
F 1 High out scale Transmission output 2 high-limit value
– 1
M Analog output mode Analog transmission 2 output V / V / -MV
/ C-MV – V
F L Low out scale Transmission output 2 low-limit value
– -
F High out scale Transmission output 2 high-limit value
– 1
R Unit address Unit address. 1 to – 1

Bits per second BPS (bits per second) 4 / 48 / / 1 /
84 –

RT Parity bit Communication parity bit NON / V N / O – NON
T Stop bit Stop bit 1 / –

R T Response waiting time Response waiting time to ms

COMW Communication write Communication write permission n / I – n

7.7 Parameter 5 setting group [ R ]

Parameter Description Set range Unit Factory
default
M V Multi SV Number of multi SVs 1 / / 4 Number of SVs 1

I- Digital Input Key Function DI input key function on the front panel TO / lR/ T/ OFF

TO
I-1 Digital Input 1 Function DI-1 digital Input function
OFF / TO / lR
/ M N / T / M V – OFF
I- Digital Input 2 Function DI-2 digital Input function – OFF
I MV Initial manual MV Manual control baseline MV TO / rMV – TO

rMV
Preset manual MV
Manual control initial MV ) to 1 )
(standard control)
`) to 1 ) (heating & cooling control)

%

)

rMV

Error MV

Sensor error MV ) to 1 )
(standard control)
`) to 1 ) (heating & cooling control)

%

)

MV

Stop MV

Control stop MV ) to 1 )
(standard control)
`) to 1 ) (heating & cooling control)

%

)
L Stop alarm out Control stop alarm output CONT / OFF – CONT
R User level User level TN / I – Tn
L V Lock SV SV parameter lock ON / OFF – OFF
L 1 Lock parameter 1 Parameter 1 group lock ON / OFF – OFF
L Lock parameter 2 Parameter 2 group lock ON / OFF – OFF
L Lock parameter 3 Parameter 3 group lock ON / OFF – OFF
L 4 Lock parameter 4 Parameter 4 group lock ON / OFF – OFF
L Lock parameter 5 Parameter 5 group lock ON / OFF – OFF

W
Password setting
Password setting : Password protection off. to

7.8 Password entry parameter

Parameter Description Set range Unit Factory
default

Password Password entry. 1 to
( 1: read-only) – 1
7.9 Parameter change reset parameters

Changed
parameter Description Reset parameter

IN-T

Input types V-N, L!L, L! , L L, L , L L, L , Vto
V, , , O T, , O T, R M , R M ,
r NT, L-R, -R, OT, L- C, – C, NT, IN-,
L- V, – V, L aT, L a , M1, F L1, F 1, M ,
FL , F
NIT Temperature input unit With the exception of L-R, -R, OT, L- C, – C, and NT, Input type does not affect input units.
– V SV high-limit value When SV> – V, SV resets to – V.
L- V SV low-limit value When SV<L- V, SV resets to L- V.
O-FT Control output operation mode L-MV, -MV, C-M , rMV, rMV, MV
C-M Temperature control type L-MV, -MV, rMV, rMV, MV
L-1, L- ,
L- Alarm mode/option L!L, L! , L L, L , L L, L

8 DAQMaster
8.1 Overview
DAQMaster is a comprehensive device management program that can be used with Autonics communication supporting products.
DAQMaster provides GUI control for easy and convenient management of parameters and multiple device data monitoring.

For more information, visit our website (www.autonics.com) to download “DAQMaster user manual”.

8.2 Major features
(1) DAQMaster Pro Version Feature
 Data Base
Database managing system (Access, MySQL, SQL Server, Oracle, SQLite) turns information into database in real-time, making creation and management of database easier.
 Real-time Logging
At the set cycle and condition, real-time log file is generated in CSV file.
 Modbus Device Editor
You can add the any modbus devices which are not supported at DAQMaster to set and monitor the property and I/O.
 OPC Client
It is Interface method for better compatibility among application programs based on OLE/COM and DCOM technology of Microsoft. It provides industry standard mechanism for communication and data conversion between client and server.
 DDE Client
It supports communication (IPC) among process embedded in Microsoft Window system, allowing application programs to share and exchange information. This function uses shared memory and provides a common protocol (instruction set and message format) to application programs.
(2) Featurs
 Multiple Device Support
Simultaneously monitor multiple devices and set parameters. Simultaneously connect units with different addresses in a single device. Multiple RS-232 ports are available for communications using Modbus remote terminal unit.
 Device Scan
In cases of multiple units (with different addresses) connected together, the unit scan function automatically searches for units.
 Convenient User Interface
Freely arrange windows for data monitoring, properties, and projects. Saving a project also saves the screen layout.
 Project Management
Saving data as a project file includes added device information, data monitoring screen layouts, and I/O source selection. When you open the project file, the last state of the saving moment will be loaded. Organizing project list makes managing project files easier.
 Data Analysis
Performs grid and graph analyses of data files (*.ddf ) using data analysis feature of DAQMaster. Saves grid data in .rtf, .txt, .html, or .csv files in Data Grid.
 Monitoring Data Log
When monitoring, data log files can be saved in either DAQMaster data files (.ddf) or CSV (.csv) files. Open files saved in .csv format directly from Microsoft Excel. Define log data file naming/saving rules and destination folders to make file management convenient.
 Tag Calculation Editing
Read tag value is available to calculate the set formula for the desired value.

 Print Modbus Map Table Report
Print address map reports of registered Modbus devices. Modbus map table reports can be saved in html (*.html) and pdf (*.pdf) formats.
 Multilingual Support
Supports Korean, English, Japanese, and Simplified Chinese. To add a different language, modify the files in the Lang folder rename, and save.
 Script Support
Uses the Lua Script language and deals with different I/O processes for individual devices.

8.3 Special feature for TK Series
Parmaeter mask and user parameter group is available by DAQMaster. Visit our website (www.autonics.com) to download DAQMaster software and the manual.

8.3.1 Parameter mask
This feature is able to hide unnecessary parameters to user environment or less frequenctly used parameters in parameter group.
Masked parameters are not only displayed. The set value of masked parameters are applied.

No Item Description
£ Parameter mask selection Select the to-be masked parameters.
Right-click the to-be masked parameters and they turn gray.
¤ Download Applies the set masked parameters to the device.
¥ Save Saves the set masked parameters as a mask information file.
¦ Open Opens the saved mask information file.
§ Initialize factory default Clears the set for the masked parameters. Download this setting to apply it to the device.
¨ Close Closes the Parameter Mask Settings dialog.
© Device information Displays device name, unit address, model name, and version.

Example of masking alarm, SV setting parameters of parameter 1 group, input type, unit of parameter 3 group, and all of parameter 4 group.

8.3.2 User parameter group [ R ]
This feature is able to set the frequently used paramters to the user paramter group. You can quickly and easily set parameter settings.
User parameter group can have up to 30 parameters.

No Item Description

£
User parameter group Displays the selected parameters as user parameter group.
Double-click the parameters for the user parameter group, and these parameters turn gray.
To delete the parameters at the user parameter group, double-click the parameters.
¤ User parameter group selection – All initialize: Initializes the set user parameter group.
– Ȥ,Ȧ: Changes the selected parameter order up/down.
¥ Download Applies the set user parameter group to the device.
¦ Save Saves the set user group as user parameter group information file.
§ Open Opens the saved user parameter group file.
¨ Initialize factory default Clears the set for the user parameter group. Download this setting to apply it to the device.
© Device information Displays device name, unit address, model name, and version.
ª Close Closes the User Parameter Group Settings dialog.

Example of the set user parameter group with SV setting, control output RUN/STOP, alarm outptu 1 low/high-limit, SV-0/1/2/3 set value, manual reset, input correction, alarm output 1 mode/option/hysteresis/contact type/ON delay time/OFF delay time parameters.

0&7-7.81-92.3-1703(1

Instruction Manual
DS21 Differential Pressure Switch

Table of Contents
1. Safety Instructions
2. Intended Applications
3. Product Description and Functions
4. Installation
5. Commissioning
6. Maintenance
7. Transport
8. Service
9. Accessories
10. Disposal
11. Specifications
12. Dimensions
13. Ordering Code
14. Declaration of Conformity
15. Annex

1. Safety Instructions
1.1. General
This manual contains detailed information about the product, and instructions for its installa- tion, operation and main- tenance. Operators and other
technical personnel responsible for the equipment must read this thoroughly before attempting to in- stall or operate this equipment. A copy of this ma- nual must always be kept accessible at the place of work for reference by concerned personnel.

Chapter 1 (sections 1.2 through 1.7) contains general as well as specific safety instructions. Chapters 2 through 10, covering topics ranging from intended purpose of the equipment to its final disposal, also include important points relating to safety. Overlooking or ignoring any of these safety points can endanger humans and animals, and possibly cause damage to other equipment.

1.2. Personnel Qualification
Personnel responsible for installation, operation, maintenance and inspection of this product must have the qualifications, training and experience necessary to carry out such work on this type of equipment.

1.3. Risks of Disregarding Safety Instruc- tions
Disregarding safety instructions, use of this pro- duct for purposes for which it is not intended, and/ or operation of this product outside the limits specified for any of its technical parameters, can result in harm to persons, the environment, or the plant on which it is installed. Fischer Mess- und Regeltechnik GmbH will not be responsible for consequences in such circumstances.

1.4. Safety Instructions for Operators
Safety instructions for the proper use of this pro- duct must be followed. This information must be available at all times by personnel responsible for installation, operation, maintenance and inspec- tion of this product. Adequate steps must be taken to prevent the occurrence of hazardous conditions that can be caused by electric energy and the con- vertible energy of the process media. Such condi- tions can, for example, be the result of improper electrical or process connections. Detailed infor- mation is available in relevant published norms (DIN EN, UVW in Germany; and equivalents in other countries), industrial standards
such as DVWG, Ex-, GL-, VDE guidelines, as well as regulations of the local authorities (e.g., EVUs in Germany).

1.5. Modifications Forbidden
Modification or other technical alteration of the product is not permissible. This also applies to the use of unautho- rized spare parts for repair / maintenance of the product. Any modifications to this product, if and as necessary, should be done only by Fischer Mess- und Regeltechnik GmbH.

3. Product Description and Functions
3.1. Schematic Diagram

1.6. Operational Restrictions
The operational reliability of the product is guaranteed only when used for intended purposes. The product must be selected and configured for use specifically with defined process media. The limiting values of operating parameters, as given in the product specification sheet, must never be crossed.

1.7. Safety Considerations during Installation and Maintenance

3.2. Principles of Operation

1. Pressure chamber
2. Motion work
3. Tappet
4. Microswitch actuating elements
5. Measuring springs
6. Measuring diaphragm

The safety instructions given in this manual, existing na- tional regulations relating to accident prevention, and the internal safety rules and procedures of the user organiza- tion regarding safety during installation, operation and servicing must all be followed meticulously.

It is the responsibility of the users to ensure that only su- itably qualified and experienced technical personnel are used for installation, operation and servicing of this equipment.

2. Intended Applications
These type series instruments are used as flow-opera- tion safety device in heat carrier oil plants acc. to DIN 32 727 and hot water plants acc. to VdTÜV data sheet flow 100. The flow-operation safety devices consist of a differential pressure device, e.g. an orifice plate, diffe- rential pressure switch and adequate shut-off valves. Follow mounting instructions in accordance to applica- tion. All instruments of this type series meet these demands. Successful structural testing of this type series is confirmed by the following marks of conformity:

• for flow-operated safety devices
DIN 32 727 DIN record No. 1B012/07
• acc. to VdTÜV data sheet flow 100 TÜV . SW/SB . 07 – 020

The monitoring and switching instrument is based on a rugged and uncomplicated diaphragm movement su- itable for overpressure, partial vacuum, and differential pressure measurements. The operating principle of the system is identical in all three applications.

In a state of equilibrium, the forces of the springs on both sides of the diaphragm are balanced. The pressure or differential pressure to be measured creates an unbalanced force at the diaphragm. This force moves the diaphragm system against the force of the springs for the measuring range until a new equilibrium is reached. When subjected to excessive pressure, the diaphragm rests on metal supporting plates.

A centre-mounted tapped transfers the motion of the dia- phragm system to the motion work and to the actuating elements of the microswitches.

4. Installation
4.1. General
The instrument is intended for wallmounting by default. The instrument can be attached directly to flat walls by th- ree mounting feet cast to the casing. The instrument can be mounted into switchboard by panel mounting kit DZ11. It is factory-callibrated in vertical position and may not be mounted otherwise. To ensure proper operation during installation and maintenance, appropriate shut-off fittings have to be installed at the plant.

4.2. Installation Regulations for Flow-operated Safety Devices in Heat Transfer Plants acc. to DIN 4754
• The set-up of measuring instruments has to be done acc. to VDE/VDI 3512, sheet 1 for differential pressu- re producers acc. to DIN 1952/ VDI 2041.
• Shut-off valves in differential pressure pipes may only be manipulated with tools. Screw joints in these pipes need to be conducted that way they are leak proof wit-

2

hout aid of sealants.
• The clear diameter of the differential pressure pipes’ length needs to be designed that way, that with cold pipework (approx. 20°C) the reaction time of the inst- rument is no more than 5 secs.
• Differential pressure pipes need to be of metal, their clear width may be no less than 4mm and their stret- ched length must be at least 500mm. When arranged acc. to VDE/VDI 3512, sheet 1 with valve block the stretched length of the differential pressure pipe bet- ween valve block and differential pressure transmitter must be at least 500mm.
• Locking und unlocking conditions must be made sure by subsequent electrical wiring during installation.

4.3. Installation Regulations for Flow Limiters in Steam Boiler and Hot Water Plants
• Apply measuring instruments acc. to DIN 1952 / VDI 3212, sheet 1, Itabar or Annubar sensors.
• The set-up of measuring instruments has to be done acc. to VDE/VDI 3512, sheet 1 for differential pressu- re producers acc. to DIN 1952 / VDI 2041.
• The differential pressure pipes must be suitable to be shut off and blown out with fivefold valve block.
• The differential pressure pipes need to be of metal and their clear width must be at least 8mm. The stret- ched length of the differential pressure pipes must be at least 500mm.
• Shut-off valves in differential pressure pipes may only be manipulated with tools. Screw joints in these pipes need to be conducted that way they are leak proof wit- hout aid of sealants or the conjunction needs to be welded or brazed.

4.4. Process Connections
• Only qualified technicians authorized for this type of work should undertake installation.
• Ensure that process equipment and pressure lines are at atmospheric pressure before making pressure connections.
• The instrument should be provided with suitable pro- tection against pressure surges (e.g., snubber or pulsation damper).
• Ensure that the mechanical configuration and mate- rials of construction of the instrument are compatible with the process media.
• Ensure that process pressure is always less than the specified safe pressure rating.

4.5. Electrical Connections
• Only qualified technicians authorized for this type of work should undertake installation.
• Electrical connections must comply with relevant in- ternational, national and local regulations and norms relating to electrical and instrumentation installations.
• Switch off electrical power to the plant before attempt- ing electrical installation work of any kind.
• Make electrical connections to the instrument through a suitable fuse.

5. Commissioning
Power supply and signal cabling to the instrument must be correctly selected to meet operational requirements, and installed in a way that does not cause physical stress to the instrument.

Pressure lines must have a downward gradient throughout, from the pressure instrument to the process vessel / pipe. This is to prevent formation of air / gas po- ckets (for liquid applications) and liquid plugs (for air / gas applications). If this continuous downward gradient cannot be provided for any reason, then suitable water and / or air separation devices must be inserted in the pressure line.

The pressure lines must be kept as short as possible and must not have short bends to avoid measurement errors induced by pressure line delays.

When used with liquid media the lines must be vented to avoid measurement errors induced by different heights in liquid columns. The instrument and lines must be pro- tected against frost when used with water.

Check all pressure connections for leaks before commis- sioning.

5.1. Pressure Connections
The instruments pressure ports are marked by ““ and ““ symbols. The pressure applications need to be in- stalled according to the label.

Differential pressure measurement: higher pressure
 lower pressure
Pressure measurement:  pressure port Negative pressure measurement:  negative pressure
port

3

5.2. Zero Point Adjustment and Setting of Swit- ching Points
Zero point adjustment sc- rew

Switching point adjustment

5.2.1. Zero Point Adjustment
• Charge pressure chamber with existent static pressu- re.
• Remove cover.
• Set measuring indicator to zero by zero point adjust- ment screw.
• Mount cover.

5.2.2. Setting of Switching Points
• Unscrew plugs from cover.
• Set desired switching points according to marks on reference value scale by screwdriver. Achievable accuracy: 5% FS. More exact settings can be achie- ved by using accessories like testing manometer, ohmmeter on site or ex factory.
• Screw plugs in.

5.3. Connection Scheme

6. Maintenance
The instrument is inherently maintenance-free.

However, to ensure reliable operation and maximize the operating life of the instrument, it is recommended that the instrument, its external electrical and process con- nections, and external connected devices be regularly in- spected, e.g.:

• Check the display.
• Check the switching function in connection with exter- nal devices.
• Check all pressure connections for leak-tightness.
• Check the integrity of all electrical connections of the instruments.
Inspection and test schedules depend on operating and site conditions. The operating manuals of other equip- ment to which the instrument is connected must be read thoroughly to ensure that all of them work correctly when connected together.

7. Transport
The product must be protected against shock and vibra- tion during transport. It must therefore be properly pack- ed, preferably in the original factory packaging, whenever it is to be transported.

8. Service
Any defective devices or devices with missing parts should be retourned to Fischer Mess- und Regeltechnik GmbH. For quick service contact our service department.

Remaining medium in and on dismantled measuring instruments may cause danger to persons, environment and equipment. Take reasonable precautions! Clean the instrument thoroughly if necessary.

9. Accessories
N.A.

10. Disposal
Protect your environment!
Use the product in accordance with relevant regulations. Please be aware of environmental consequences of dis- posal at the end of the product’s life, and take care accordingly.

4

11. Specifications
General
Measuring range 0… 400 mbar up to 0… 6 bar (see ordering code) Nominal pressure 25 bar
Max. static operating pressure Acc. to measuring range (see ordering code)
Max. pressure load One-sided overpressure protected up to nominal pressure on () – and () side of diaphragm, partial vacuum protected
Perm. ambient temperature -10… +70°C Perm. medium temperature 70°C
Protection class IP 54 acc. to DIN EN 60529 Mounting position Vertical
Measuring accuracy ± 2.5% FS
Zero adjustment Located in the dial

Switching Elements
Contact output 1 or 2 microswitches, 1-channel change-over contacts Adjustment of switching points External adjustment by standard value scales
smallest adjustable value: approx. 5% FS
Switching hysteresis Approx. 2.5% FS
Load data / contacts U~max. = 250 V AC, Imax. = 5 A, Pmax. = 250 VA U=max. = 30 V DC, Imax. = 0.4 A, Pmax. = 10 W

Electrical Connection Numbered cable, prewired terminal box, 7-channel plug
Pressure Connection Thread G1/4 female, cutting ring connection for 6, 8, 10,12 mm  tube of brass, zinced steel or chrome nickel steel
connection shank G1/4 male DIN EN 837

Measuring System Diaphragm measuring system, diaphragm of reinforced Viton®

Materials
Pressure chamber Aluminium GkAlSi10(Mg), varnished black
Aluminium GkAlSi10(Mg) HART-COAT® surface protection Chrome nickel steel 1.4305
Measuring diaphragm Diaphragm measuring system and gaskets of Viton® Materials: medium Stainless steel 1.4310, 1.4305
Materials: housing Macrolon
Weight Pressure chamber of Aluminium = 1.2 kg, pressure chamber of 1.4305 = 3.5 kg
Mounting Wallmounting – 3 fastening elements
Panel mounting – panel mounting kit DZ11 ø132 mm Pipe mounting, pressure connections = (), () symbols
– by screwed-in cutting ring or clamping ring connection
– by screwed-in connection shank acc. to DIN EN 837 for nipple fitting acc. to DIN 16284

5

12. Dimensions (all units in mm unless otherwise stated)

6

13. Ordering Code

0 # # # 0

Application
Thermal oil DIN 32727 / Hot water / Flow 100 ……………………………………………… > 0

Pressure Chamber
Aluminium …………………………………………………………………………………………………………… > A
Aluminium HART COAT® ……………………………………………………………………………………… > D
Chrome-nickel-steel 1.4305 …………………………………………………………………………………… > W

Pressure Connection
Female thread G1/4 > 0 1
Cutting ring fitting of steel for 6 mm tube > 2 0
Cutting ring fitting of steel for 8 mm tube > 2 1
Cutting ring fitting of steel for 10 mm tube > 2 2
Cutting ring fitting of steel for 12 mm tube > 2 3
Cutting ring fitting of 1.4571 for 6 mm tube > 2 4
Cutting ring fitting of 1.4571 for 8 mm tube > 2 5
Cutting ring fitting of 1.4571 for 10 mm tube > 2 6
Cutting ring fitting of 1.4571 for 12 mm tube > 2 7
Switching Elements
1 adjustable microswitch………………………………………………………………………………………………………………………..> A
2 adjustable microswitches…………………………………………………………………………………………………………………….> B

Electrical Connection
1 m numbered cable, prewired ………………………………………………………………………………………………………………………….> 1
2.5 m numbered cable, prewired ……………………………………………………………………………………………………………………….> 2
5 m numbered cable, prewired ………………………………………………………………………………………………………………………….> 5
Prewired terminal box ………………………………………………………………………………………………………………………………………> K
GL approved model, 3 m supply cable H07 RNF …………………………………………………………………………………………………> Z

Shaded marks are not indicated in data sheet and only available on request!

7

14. Declaration of Conformity

8

15. Annex
DIN CERTCO certificate DIN 32723

9

10

TÜV Certificate

11

EC type-examination certificate acc. to directive 97/23/EC

12

GL type approval certificate

13

14

15

Technische Änderungen vorbehalten • Subject to change without notice • Changements techniques sous réserve
Fischer Mess- und Regeltechnik GmbH • Bielefelder Str. 37a • D-32107 Bad Salzuflen • Tel. +49 5222 9740 • Fax +49 5222 7170 eMail: info@fischermesstechnik.de • www.fischermesstechnik.de
16

SIHI
Range: ZTND
Volute casing pump for heat transfer oils PUMP DESCRIPTION
SERIAL NUMBER

Operating instructions Translation of the original instructions
Safety issues Chapter 1
Intended application Chapter 2
Planning the installation Chapter 3
Unpacking, storage, handling Chapter 4
Installing the pump Chapter 5
Start up and shut down Chapter 6
Maintenance, dismantling and assembly Chapter 7
Troubleshooting Chapter 8
Technical data Chapter 9
Connections, dimensions, sectional drawing Chapter 10 Declaration of conformity. Example Annex I
ATEX information Annex II

Attention: Both the pump and/or the pump set must be installed and commissioned by qualified technical personnel only and these installation, commissioning and operating instructions must be strictly observed. Failure to do so could result in:
• danger to you and your colleagues,
• the pump or the pump unit may be damaged,
Note that the manufacturer is not liable for damages resulting from failure to observe these instructions. Please be aware of your responsibility to your colleagues when working on the pump or the pump set!

Safety instructions marked with included in this Operating Instructions and in the Supplementary Operating Instructions, which must be attached to this Operating Instruction, have to be considered in particular when operating this pump in potentially explosive atmospheres!

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify its products at any time without prior notice © (Sterling Fluid Systems BV) 2009

1. Safety
This operating manual gives basic instructions, which must be observed during installation, operation and maintenance of the pump. It is therefore imperative that this manual is read by the responsible personnel/operator(s) prior to assembly and commissioning. It must always be kept available at the site of pump installation.
It is not only the general safety instructions contained in this chapter “Safety” which must be observed, but also the specific information provided in the other chapters.
1.1 Identification of safety symbols in the operating instructions
Safety symbols are given in these operating instructions. Non compliance with these would affect safety and are identified by the following symbol

Danger symbol as per DIN 4844-W9 (ISO 3864 – B.3.1)
Or in case of danger of electric current with:

Danger symbol as per DIN 4844 W-8 (ISO 3864 – B.3.6)
The word

identifies those safety regulations where non- compliance may pose a danger to the pump and its function. It is imperative that the appropriate safety information is attached to the pump/pump set, for example:
• an arrow indicating the direction of rotation
• symbols indicating fluid connections
• the identification plate

and that these are kept legible.
1.2 Qualification and training of personnel
The personnel responsible for operation, maintenance, inspection and assembly must be adequately qualified. The scope of responsibility and supervision of the personnel must be exactly defined by plant management. If the staff do not have the necessary knowledge, they must be trained and instructed. This task may be performed by the machine manufacturer or supplier on behalf of the plant management. Moreover, plant management must ensure that the contents of the operation instructions are fully understood by plant operators and other relevant personnel such as maintenance staff.
1.3 Hazards in case of non compliance with safety instructions
Non compliance with the safety instructions may result in risk to personnel as well as to the environment and the pump/pump set and result in the loss of any right to claim damages.
For example, non-compliance may result from, or lead to, the following:
• failure of important functions of the pump/pump set/plant
• failure of specified procedures of maintenance and repair
• exposure of people to electrical, mechanical and chemical hazards
• danger to the environment owing to hazardous substances being released.
1.4 Compliance with regulations relating to safety at work
When operating the pump the safety instructions contained in this manual, the relevant national accident prevention regulations and any other service and safety instructions issued by plant management must be observed.

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

1.5 Safety instructions relating to
operation
• If high or low temperature pump/pump set components involve hazards, steps must be taken to avoid accidental contact.
• Guards for moving parts (e.g. couplings) must not be removed from the pump/pump set while in operation.
• Any leakage of hazardous (e.g. explosive, toxic, hot) fluids (e.g. from the shaft seal) must be drained safely so as to prevent any risk to persons or the environment. Statutory regulations are to be complied with.
• Hazards from electricity are to be avoided by the user (see for example the VDE- specifications and the bye-laws of the local power supply utilities).
1.6 Safety instructions relevant for
maintenance, inspection and
assembly work
It is the plant management’s responsibility to ensure that all maintenance, inspection and assembly work is performed by authorized personnel who have adequately familiarised themselves with the subject matter by studying this manual in detail.
Any work on the machine must only be performed when it is at a standstill. It is imperative that the procedure for shutting down the machine described in this manual is followed.
Pumps and pump sets, which convey hazardous media, must be decontaminated.
On completion of the work all safety and protective guards must be re-installed and made operative again. Prior to re-starting the machine, the instructions listed under “first commissioning” are to be observed.

1.7 Safety instructions for the use in areas with explosion hazard

In this section information is given for operation in areas where an explosion hazard exists.
1.7.1 Complete pump sets
If the pump is combined with other mechanical or electrical components in one set, the category of the complete unit will correspond, based upon the Directive 94/9/EC, only to that category with which all of its components comply.
Note:
These comments are of particular importance when pumps, which conform to a given category of Directive 94/9/EC, are powered by a driver which is not in the same category.
Although the pump may bear the Ex sign, the set should not be used in areas with an explosion hazard when the motor is not classified for this application.
This means that plant management personnel should always check that all elements of the set comply with the Directive 94/9/EC.
1.7.2 Execution of coupling guards Coupling guards that are to be used in areas with an explosion hazard, have to fulfil one of the following criteria:
• consist of non-sparking material, e.g. brass.
• if they consist of sparking material, e.g. steel sheet, they must be designed in such a way that the rotating parts will not come in contact with any part of the guard if errors, that could be foreseen, are committed by the user, e.g if a person steps on the guard.

1.7.3 Monitoring technical parameters
When using pumps in areas with an explosion risk, the operator must check the following parameters regularly:
• leakage of shaft seals
• bearing temperature
• that the pump is always filled with liquid during operation
• that the pump does not operate against a closed valve for any length of time.
The operator must ensure that pumps, which show evidence of abnormal operation, are switched off and not started again until the cause of the abnormal operation has been eliminated.
1.7.4 Avoiding external damage
In areas with a risk of explosion the operator must ensure that the pumps and or pump set is not subjected to external impacts e.g by heavy objects.
1.8 Unauthorized alterations and
production of spare parts Modifications may be made to the pump/pump set only after consultation with,and written approval from, the manufacturer. Using spare parts and accessories authorized by the manufacturer are in the interests of safety. Use of other parts may exempt the manufacturer from any liability.
1.9 Unauthorized mode of operation The reliability of the pump/pump set can only be guaranteed if it is used in the manner intended and in accordance with the instructions of this manual. The specified limit values must under no circumstances be exceeded.
1.10 Warranty / guarantee
Sterling Fluid Systems guarantee satisfactory operation if:
• the pump is installed and operated in compliance with these instructions and in

operating conditions approved by Sterling Fluid Systems
• modifications are only undertaken with Sterling Fluid Systems’ written agreement.

2. Application
The pump is to be used only for the operating conditions stated by the customer and confirmed by the supplier. Guarantee is assumed within the scope of the Sterling Fluid Systems conditions of sale.
Appropriate application and operating conditions are contained in the attached data sheets.

2.1 Warning of misuse

manufacturer in advance in order that appropriate technical advice can be given.
2.3 Construction and mode of operation
ZTN pumps are volute casing pumps with nominal outputs and flange dimensions acc. to EN 733 / DIN 24255. They have especially been developed for pumping mineral and synthetic heat transfer oils. The pumps are applicable in installations with and without inlet pressure.The back pull out construction allows the disassembly of the complete insert unit without removing the pump out of the pipe system.
Impurities up to a grain size of 0,1 mm can be handled, but shorten the service life.

2.2 Accessories
The accessories included in the scope of supply are indicated in the delivery note or in the order confirmation. The corresponding operating and installation instructions are also indicated in the Annex relating to accessories.
If it is intended to mount other accessories on the pump or on the pump set, please inform the

2.4 Description

Type
size Hydraulic + Bearing Shaft seal Material design Casing gasket

ZTND 032125
20to 0
050
• A First hydraulic
• B Second hydraulic
• D Transnorm size with double volute

• A one ball bearing respectively two inclined ball bearing grease lubricated and one liquid flushed sleeve bearing 002: radial shaft seal rings (Viton)
GBC: unbalanced standard mechanical seal 1B: Spheroidal cast iron GGG40.3, cast iron GG25 impeller
2B: Cast steel 2: confined flat gasket of graphite with A4 insertion
A All
D 200400, 200500 B 32160, 32200
A Alternatively 002, GBC 1B 032125 to 200315
2B 200400, 200500 2

Example of a pump designation:
1-3 4 5-7 8-10 11 12 13-15 16-17 18
ZTND 032 250 A A GBC 1B 2

Casing gasket
Execution material
Shaft sealing
Bearings: A
Hydraulic: A/B/D
Impeller size
Nominal discharge

Pump series

2.5 Shaft sealing
Depending on the application, different shaft sealing executions are offered (see 2.4)
• Radial shaft seals (execution 002) or mechanical seals according to DIN 24960 are utilised in the following cases:
• if the pump draws from a suction line,
• if the pump is fed by a feed line with a pressure of less than 0.5 bar or
• if the pumped liquid is at or near its boiling point.

3.1 Piping system

Ensure that air pockets cannot be created.
Unequal nominal widths of the suction branch and suction line must be compensated by eccentric transition pieces.

3.1.1 Suction line / inflow line
See the sketches below for the optimum layout of pump installation for flow and suction lift operation.

Connection of eccentric pipe transitions
It is recommended that a filter is installed in front of the pump with a filter surface of at least 3 times the pipe cross section (approx.100 meshes/cm²).
A shut-off valve should be installed in the feed line. It must be closed for maintenance work.
It should be installed in order to avoid air pockets forming in the spindle cap, i.e. with the spindle in a horizontal position or pointing vertically downward.
3.1.2 Discharge line
The discharge line is to be laid steeply, a constant cross section should be aimed at.
For flow regulation, a valve must be installed behind the pump. If non-return valves are used, they should close smoothly. Pressure shocks must be avoided.
3.1.3 Leakage line
For the controlled draining of leakage (required by DIN 4754) it is recommended to install a leakage line (see 5.10). For this purpose a connection bore of the size G ¼ is provided.

positive suction head operation suction lift operation

The various connecting points are shows in the
drawings. (See Annex, Chapter 10, point 10.1).
3.1.5 Pressure control
For consistent control of pressure, it is advisable to install in the pipework a measuring point in front of, and behind the pump.
3.2 Electrical connections
For the drive motor a mains connection is required which complies with the European Regulations and Directives for the Standards in Industry and with the instructions of the local power supply utilities of the country concerned.

Unpacking, storage, handling Page 1 of 1 Chapter 4

4.1 Safety measures

4.2 Unpacking
Before unpacking, a visual check of the packing is recommended. If transport damage is visible, the extent should be noted on the receipt or on the delivery note. Potential claims must be lodged immediately with the carriers or the insurance company.
4.3 Interim storage
If the pump or the pump unit is not installed immediately after delivery, it must be stored free from vibration in a dry room.

The pump or pump set must be lifted and handled as shown in the following sketches.

Pump without motor

Pump set
4.5 Protection against corrosion In general, a protective coating is applied to the whole pump, internally.
4.5.1 Removal of protection
The protective coating is compatible with normal thermal oils.
The operator must ensure that the pump is
completely free of water.

5. Installing the pump
5.1 Requirements
The pump and the pump set, must have been unpacked and handled as described in Chapter 4.
5.2 Use of trained staff
Only appropriately trained staff must undertake the work described in this chapter.
5.3 Safety measures

5.4 General information 5.4.1 Assembly tools
Special tools are not required for assembly and
installation.
5.4.2 Permissible ambient conditions
The ambient temperature can be from -20 °C to
+60 °C. The atmospheric humidity should be as low as possible in order to avoid corrosion.

5.4.3 Base, foundation
The pump must be installed on a flat floor or foundation free from vibration. In case of doubt use vibration dampening feet.
The pump set must be correctly mounted on the foundations. To avoid distortion of the pump set and/or the foundation, parallel shims must be used between the base plate and foundation.
Prior to installing, checks should be made with regard to:
– Possible damage to the pump or the pump set that may occur in transit.
– Ease of running ( check that the shaft is free to rotate by hand ).
– The foundation dimensions.
The following preparatory work must be carried out before to placing the pump:
– Roughen and clean foundation surface.
– Remove shuttering / cores from the anchor holes.
– Blow the anchor holes clean.
– Check the position and dimensions of the anchor holes against the arrangement drawing.
5.4.4 Installation of the set
The complete set mounted on the base plate must be placed on the foundation with its foundation (rag) bolts hanging below the baseplate.
5.4.5 Space required
The space required for the pump set is set out in the foundation plan or installation drawing.
Ensure easy access to the shut-off and regulation valves as well as to any measuring instruments.

5.4.6 Position
In principle the ZTN pumps are installed horizontally.

5.5 Motor
Before assembly check the direction of rotation of the motor (indicated by an arrow on the pump casing). If this is not possible the direction of rotation of the complete unit can only be checked only if the pump is filled. Only motors with axial ventilation are permitted.
In any event, the operating instructions of the motor manufacturer must be followed, since the motor is generally incorporated by STERLING FLUID SYSTEMS into the pump set.
5.6 Alignment of the set
Place shims under the base plate on both sides of the foundation bolts, 10 mm from the base plate edge. Use a spirit level to align the set.
If necessary, place shims between the foundation bolts to prevent the base plate from sagging. Care should be taken to minimize distortion of the base plate during installation. The location of the driver must not be higher than that of the pump. The max. deviation from the shaft centre line is  0,1 mm.
The foundation bolts should be embedded in concrete using quick-setting grout.
5.7 Coupling
Install the coupling avoiding hard blows, if necessary in warm condition. Arrange the pump and motor on a level base. The shaft ends must be aligned exactly. The distance between each

half of the N-EUPEX B ( FLENDER ) coupling must be 2 – 3 mm (see fig.).
If other manufacturers’ couplings are used, follow the manufacturer’s instructions. After installation on the foundation and connecting the pipework, the coupling alignment must be checked and re- aligned, if necessary. Moreover, after reaching the operating temperature the alignment of the coupling must be checked again.
The coupling requires a guard that meets DIN 31001 in order to avoid accidental contact during operation.
In any event, the operating instructions of the coupling manufacturer must be followed, since the coupling is a component incorporated by Sterling Fluid Systems.
ruler

The following is required a = a1 and b = b1

5.8 External cold oil
If the pump is operated in suction lift operation, the pressure has to be measured at the vent bore (see fig. in chapter 6).
In case of underpressure cold oil (e.g. Level-Oiler) has to be admitted onto the shaft seal via the connection Uio (G ¼). The borehole UAL has to be closed. By this measure is ensured that air cannot enter the system and the seal does not run dry. The standard value for the necessity of this measure is an underpressure of abt. 0,5 bar in the inflow line near the pump.

Uio

5.9 Checking before installation Before installing the pump on the plant, the following points must be checked:
1. Is the electrical current to the drive motor switched off?.
2. Are suction and discharge lines emptied and closed by valves?.
3. Is it possible to rotate the pump easily by hand (for this purpose turn the fan of the motor or the coupling)?.
4. Have the latest internal/plant instructions been observed?.
5.10 Mounting the pump and installation into pipework
The following instructions must be carried out:
1. Remove the protective covers from the pump flanges and the auxiliary pipework connections.
2. Correctly insert the flange seals. 3. Connect the suction or feed line. 4. Connect the discharge line.
The pump must be aligned with the pipework. The pipework must be supported so that distortion cannot occur when connecting the pump.
5.11 Connection of the leakage line
It is necessary, a tube must be connected to the bore UAL G ¼” for draining off, without any danger, heat transfer liquid which possibly leaves.

5.12 Final work
The following final steps must be undertaken:
1. Check the tightness of the connecting flanges. 2. Check for easy running of the pump (for that purpose turn the motor fan or the coupling).
3. Check the coupling alignment. 4. Install the coupling guard.
5.13 Hydrostatic pressure test
When subjecting the piping system to a hydrostatic pressure test, exclude the pump from the pressure test.
If it is not possible to test the pipework without the pump, ensure that foreign material cannot enter the pump.

• The max. permmisible pressure for a pressure test is 1,3 times the nominal pump pressure.
• The nominal pump pressure is indicated in the tecnical data sheet.
• The medium for the pressure test should be heat transfer oil.
• For reasons of operating safety it is not permitted to subject the pump to a

6. Start-up and shut-down operations
6.1 Requirements
The pump or the pump set, must be installed acc. to the instructions of Chapter 5.

6.2 Use of trained staff
Only appropriately trained staff must carry out the work described in this chapter.
6.3 Safety measures

• If there is no bypass line, do not run the pump with the control valve closed for any length of time.
• Safety measures should be taken by the end user to ensure (for example by means of a relief valve) that the permissible pump casing pressure is not exceeded during operation
• Repeat the alignment of the coupling at operating temperature. Re-align the pump or the motor, if necessary.
6.4 Filling / ventilation
Before the first start-up the pump as well as the suction or inflow line, respectively, must be completely filled with pumping medium in order to avoid dry operation of the pump. It can take several minutes to ventilate the pump completely as the heat transfer oil is very viscous when it is cold. For the ventilation of the pump remove the vent screw shown below and rescrew it only when heat transfer oil leaves bubble-free.

Vent screw

ATTENTION
An incomplete ventilation can shorten the service life of the pump.
6.5 Electrical connection
The motor must be connected at set out in the circuit diagram in the terminal box.
6.6 Checks before switching-on Before switching on the pump unit, the following points should be checked:

1. Is all pipework connected and are the unions tight?
2. Is the pump including the pipework filled properly?
3. Is the shut-off valve in the discharge line closed?
4. Is the shut-off valve in the suction line completely opened?
5. Is the motor ready for operation?
6. Is the direction of rotation of the motor correct?
(check by running the motor for a short time) 7. Is the coupling aligned exactly?
8. Has the shaft seal been installed?
9. Are the supply lines, if any, to the shaft seal open?
10. In the case of oil lubrication – has the bearing housing been correctly filled with oil?
11. Is the pump completely ventilated?
6.7 Start-up operation
For starting proceed as follows:
1. Open fully the valve on the suction side 2. Close the valve on the discharge side 3. Switch on the motor
4. Check the pressure gauges at the pressure measuring points
If the pumping pressure does not increase consistently with increasing speed, switch off the motor again and vent the pump one more.
5. After reaching operating speed, regulate the operating point of the pump by adjusting the valve in the discharge line (see technical data for permissible range of operation).
Pumping against a closed valve in the discharge line is permitted only if a minimum output via a bypass line is guaranteed.
By means of safety measures at the plant (e.g. overflow valve) it must be ensured that the admissible casing pressure of the pump is not exceeded because of malfunction during operation.
The alignment of the coupling should be repeated at operational temperature. If necessary the pump

or the drive motor, respectively, is to be re- aligned.
6.8 Switching frequency

Size Permissible number of starts equally spaced
per hour
032125, 032160, 032200, 032250,
040125, 040160, 040200, 040250,
040315, 050125, 050160, 050200,
050250, 050315, 065125, 065160,
065200, 065250, 065315, 080160, 8
080200, 080250, 080315, 100160,
100200, 100250, 100315,

150315, 150400, 150500, 6
200250, 200315, 200400,

6.9 Special instructions
During operation the following points must be observed:
– Control the speed and the delivery head
– Ensure that the pump runs without vibration
– Control the liquid level in the suction line and/or inflow tank
– Control the bearing temperature (max. temperature 100 °C)
– Control the cooling flow from the motor to the shaft seal.
– Shaft seal: As a rule leakages of some cm³/h at shaft seals occur as vapour or fog. Additionally slight drop leakages can occur.

6.10 Shutting-down
Before shutting down close the regulating element at the discharge side.
After shutting down all regulating elements can be closed. If there is the risk of freezing, dismount the pump and then drain it by turning it upside down.

7. Maintenance, dismantling and assembly

As lubricant should be used lithium-saponified grease which is free from resins and acids and which protects against rust.

7.1 Requirements
The pump or the pump set must have been shut down in the manner described in Chapter 6.
7.2 Use of trained staff
Only appropriately trained and skilled staff should undertake the work described in this chapter.
Only authorised personnel must undertake electrical work associated with maintenance of the pump/pump set.

Properties:

grease nipple

7.3 Safety measures

7.4 Maintenance and inspection
The pump requires only little maintenance.
7.4.1 Bearing with grease lubrication The antifriction bearing should be lubricated through greese nipples 63.60 at the following intervals:

– Consistency as per DIN 51818, class 1
– Fulling penetration DIN ISO 2137 (0,1 mm) 310-340
– Application temperature 140 °C
– Dropping point 250C, DIN ISO 2176
In our works the antifriction bearings are lubricated with the grease Microlube GL 261 (manufacturer Klüber ). After approx. 10000 hours of operation in case of permanent operation, or after two years in case of intermittent operation, the antifriction bearing is to be dismounted, washed out and to be provided with a new grease filling.
If another suitable grease shall be applied, the residues of the former grease must be entirely eliminated from the bearing and the bearing chamber.
In case of especially unfavourable conditions of operation (humidity, dust and/or high ambient temperatures) the lubrication intervals must be considerably shorter.
The quantity of grease required is:

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

7.4.2 Inner sleeve bearing
The inner sleeve bearing does not require any maintenance. Abrasive particles in the pumping medium cause wear and shorten the service life.
7.4.3 Shaft seals
• For shaft seal execution “002”
The radial seal rings should have little or no visible leakage. Where there is considerable leakage, check the radial seal rings.
• For shaft seal execution “CDC” and “GBC” The mechanical seal should have little or no visible leakage. Where there is considerable leakage, check the mechanical seal.
7.4.4 Drive motor
The drive motor must be maintained according to the instructions of the manufacturer.
7.5 Dismantling
7.5.1 Preparation for the dismantling
Proceed as follows:
• Disconnect power to the motor
• Drain the plant, at least within the pump area, i.e. between the valves on the suction and discharge side
• If necessary, disconnect any measuring probes or control devices and remove them
• The pump casing must not be detached from

7.5.2 Replacement parts
The item numbers necessary for ordering spare parts are provided in the component parts list in the Annex.
In any case the flat gasket item No. 40.00 is to be replaced when the pump is assembled again.
7.5.3 Dismantling the pump
7.5.3.1 Bearing bracket 25 and 35
1. Mark the position of the parts to each other by a colour pen or by a scribing point.

fig. 1
2. Detach the nuts 92.00 and remove the washers 55.00.

the pipe union

Remove motor mounting bolts and move the
motor so that there is sufficient space to remove the back pull out unit. When using a spacer coupling repositioning of the motor is not necessary.
• Dismantle guard coupling, pump feet and coupling.

3. Remove the complete insert unit out of the pump casing 10.20 and take off the gasket 40.00 (fig. 1)

• For shaft seal execution “002”

fig. 2
4. Detach the shaft nut 92.20 and take off the safety tab washer 93.10. (fig. 2)
5. Dismount the impeller 23.00 and the key 94.01.
6. Detach the hexagon screws 90.13 of the bearing bracket 33.00 and take off the cover 16.10 incl. shaft seal casing 44.11.
7. If required the shaft seal casing 44.11 is to be dismounted by detaching the screws 91.40 and removal of the disks 55.02.
8. Remove the key 94.00, detach the hexagon screws 90.10 and dismount the bearing cover 36.00.
9. Push the shaft 21.00 together with the antifriction bearing 32.10 out of the bearing bracket 33.00.

fig. 3
10. Take off the circlip 93.20 by means of a burst- off pliers and pull the antifriction bearing 32.10 and the spacer 52.50 from the shaft 21.00. (fig. 3)

• For shaft seal execution “CDC” and “GBC”

fig. 2
4. Detach the shaft nut 92.20 and take off the safety tab washer 93.10. (fig. 2)
5. Dismount the impeller 23.00 and the key 94.01.
6. Detach the hexagon screws 90.13 of the bearing bracket 33.00 and take off the cover 16.10 incl. shaft seal casing 44.10. The seal cover 47.10 can remain in the bearing bracket.
7. Mark the position of the locating ring 48.50 on the shaft. (fig. 3)

fig. 3
8. Dismount carefully the locating ring and the mechanical seal 43.30.
9. If required the casing of the mechanical seal 44.10 can be dismounted by detaching the screws 91.40 and removal of the disks 55.02. Furthermore the seal cover 47.10 can be removed out of the bearing bracket 33.00 by means of a lever.
10. Remove the key 94.00, detach the hexagon screws 90.10 and dimount the bearing cover 36.00.

11. Push the shaft 21.00 together with antifriction bearing 32.10 out of the bearing bracket 33.00.

fig. 4
12. Take off the circlip 93.20 by means of a burst- off pliers and pull the antifriction bearing 32.10 and the spacer 52.50 from the shaft 21.00. (fig. 4)
7.5.3.2 Bearing bracket 45
1. Mark the position of the parts to each other by a colour pen or by a scribing point.

fig. 1
2. Detach the nuts 92.00 and remove the washers 55.00.

• For shaft seal execution “002”

fig. 2
4. Detach the shaft nut 92.20 and take off the safety tab washer 93.10. (fig. 2)
5. Dismount the impeller 23.00 and the key 94.01.
6. Detach the hexagon screws 90.13 of the bearing bracket 33.00 and take off the cover 16.10 incl. shaft seal casing 44.11.
7. If required the shaft seal casing 44.11 is to be dismounted by detaching the screws 91.40 and removal of the disks 55.02. Dismount clamping disc 50.60.
8. Remove the key 94.00, detach the hexagon screws 90.10 and dismount the bearing cover 36.00.
9. Push the shaft 21.00 together with the antifriction bearing 32.11 out of the bearing bracket 33.00.

Take safety measures for supporting the complete mounting unit and catch oil possibly flowing out.
3. Remove the complete insert unit out of the pump casing 10.20 and take off the gasket 40.00 (fig. 1)

fig. 3
10. Detach the shaft nut 92.30 and take off the safety tab washer 93.11. Then pull the inclined ball bearing 32.11 and the spacer 52.51 from the shaft 21.00. (fig. 3)

• For shaft seal execution “CDC” and “GBC”

the seal cover 47.10 can be removed out of the bearing bracket 33.00 by means of a lever.
10. Remove the key 94.00, detach the hexagon screws 90.10 and dimount the bearing cover 36.00.
11. Push the shaft 21.00 together with antifriction bearing 32.11 out of the bearing bracket 33.00.

fig. 2
4. Detach the shaft nut 92.20 and take off the safety tab washer 93.10. (fig. 2)
5. Dismount the impeller 23.00 and the key 94.01.
6. Detach the hexagon screws 90.13 of the bearing bracket 33.00 and take off the cover 16.10 incl. shaft seal casing 44.10. The seal cover 47.10 can remain in the bearing bracket.
7. Mark the position of the locating ring 48.50 on the shaft. (fig. 3)

fig. 3
8. Dismount carefully the locating ring and the mechanical seal 43.30.
9. If required the casing of the mechanical seal 44.10 can be dismounted by detaching the screws 91.40 and removal of the disks 55.02. Dismount clamping disc 50.60. Furthermore

fig. 4
12. Detach the shaft nut 92.30 and take off the safety tab washer 93.11. Then pull the inclined ball bearing 32.11 and the spacer 52.51 from the shaft 21.00. (fig. 4)

7.6 Post dismantling activities 7.6.1 Hints for cleaning.
• Clean all parts.
• Clean the clearances and sealing surfaces with an appropriate liquid.
7.6.2 Points to be checked
The following pump parts are to be checked: 1. Check the shaft seal for damage and wear.
2. Check the wear ring surfaces for damage and wear. The difference in diameter between the wear ring at the impeller and the casing parts shall be 0,3 mm to 0,5 mm. If the wear rings are worn out too much, they have to be replaced.
3. The flat gaskets 40.00 and 40.01 have to be replaced in any case.
4. Check the O-rings 41.20 and 41.24 and replace them, if necessary.

7.6.3 Repair of the shaft seal
• For shaft seal execution “002”
Defective radial seal rings 42.13 must be removed
carefully out of the sealing chamber without damaging the wall.
As the sealing rings have a thin metal shell it is recommended to push a sharp tool (e.g. a small sharpened screw driver) between the casing wall and the sealing ring shell. Then deform the ring by bending up it until the ring can be taken out. (see

fig. 7

Ø d x

fig. 5)

fig. 5

Use a mounting taper plug (accessory) for the assembly.
The sealing lips must show to the inside and only the last ring points outwards. The spaces between he sealing rings are to be provided with high temperature grease (see 7.4).
7.6.4 Repair of the bearing bush
In case of wear the bearing bush must be replaced completely with the appertaining steel sleeve. It must be pulled out with an inside withdrawal device. After pressing in the new bush

Then clean the sealing chamber and grease it slightly. If the shaft shows grooves in the area of the radial seal rings, the sealing rings are to be mounted acc. to fig. 6.
The distances “x” and “y” apply to the corresponding seal diameter “d“.

ensure that it fits exactly.

x y
fig. 6

Ø d x y

7.7 Assembly
7.7.1 Tightening torque
When tightening the bolts the following torques must be used:

Fig. 7 shows the original mounting of the radial

7.7.2 Pump assembly
• For shaft seal execution “002”
Carry out the following steps:
1. Assembly of the shaft unit acc. to fig. 3.

fig. 8
2. Assembly of the insert unit acc. to fig. 2. When assembling pay attention to the position of the vent screw 90.30 with regard to the bearing bracket 33.00.
3. The casing seal is effected by a special flat gasket 40.00. Push the insert unit into the volute casing acc. to fig. 1; tighten with 65 Nm.
• For shaft seal execution “CDC” and “GBC” Carry out the following steps:
1. Assembly of the shaft unit acc. to fig. 4.

fig. 8
2. Assembly of the insert unit acc. to fig. 2. Under assembly the seal cover 47.10 with the vent screw 90.30, as shown in the fig.9, has to be fitted into the bearing bracket 33.00.

fig. 9
The setting of the mechanical seal can be seen on fig. 10.

fig. 10

d a
25 175,5
35 237
55 307
3. The casing seal is effected by a special flat gasket 40.00.
4. Push the insert unit into the volute casing acc. to fig. 1; tighten with 65 Nm.

Troubleshooting Page 1 of 1 Chapter 8

8.1 Use of trained staff
Trouble shooting must be undertaken only by appropriately trained personnel.
8.2 Symptoms, causes and remedies

Symptom Cause Remedy

Output too low – Counter pressure too high Check the plant for contamination.
Regulate anew the operating point.
– Pump or pipeline, resp., not completely
filled vent and fill the pump as well as the
suction or inflow line resp.
– Suction lift too high or positive suction
head too low Check the liquid levels, open the shut-off
elements at suction side. Clean the filters
and dirt traps installed at suction side.
– Sealing gap too large because of wear Replace the worn pump parts.
– Wrong sense of rotation Modify the motor connection.
– Casing or suction line leaky Replace the casing seal. Check the flange
connections.
Pump does not prime or only intermittently – Casing, shaft seal, foot valve or suction
line leaky Replace the casing seal. Check the shaft
seal. Check the flange connections.
– Suction lift too high or positive suction
head too low Check the liquid levels, open the shut-off
elements at suction side. Clean the filters
and dirt traps installed at suction side.
– Loose or jammed parts in the pump. Open and clean the pump.

Pump leaks – Casing screws not correctly tightened. Check the tightening torque of the casing
screw.
– Radial seal rings leaky. (only for 002) Check the condition of the rings as well as
the friction surface of the shaft, if
necessary replace the rings.
– Mechanical seal leaky. (only for CDC,
GBC) Check the sealing surfaces and elastomers
of the mechanical seal. In case of damage,
replace the mechanical seal.
– Seals defective Replace the seals.

Temperature of the pump increases – Pump or pipeline not completely filled. Vent and fill the pump as well as the
suction line or inflow line, resp.
– Suction lift too high or positive suction
head too low Check the liquid levels, open the shut-off
elements at suction side. Clean the filters
and dirt traps installed at suction side.
– Pump is operated against closed gate. Open the shut-off element at discharge
side.

Pump runs noisily – Pump or pipeline not completely filled. Vent and fill the pump as well as the
suction line or inflow line, resp.
– Suction lift too high or positive suction
head too low. Check the liquid levels, open the shut-off
elements at suction side. Clean the filters
and dirt traps installed at suction side.
– Pump is not properly leveled or it is
distorted. Check the pump installation.
– Foreign matters in the pump Dismount and clean the pump.
– Antifriction bearing or sleeve bearing
defective Replace parts.
Motor protection switch switches off – Pump is not properly leveled or it is
distorted. Check the pump installation.
– The admissible operating conditions were
not complied with Observe the operating conditions stated in
the data sheet.
– Loose or jammed parts in the pump. Open and clean the pump.

Technical data Page 1 of 4 Chapter 9

For technical information about the pump or pump set, which is not described in this chapter, see the specific data sheet. Note that data relating to a specific order may conflict with information provided here. In any such case, the order specific information will override data provided in the general technical documentation.
Pressure component operating limits:

Shaft sealing operating limits:

Heat barrier / shaft sealing / bearing tempeture trend in normal operation:

Flange locations:
Axial suction flange, discharge flange radially upwards.
Flanges:
Material design 1B and 2B: Complies with DIN 2533 PN16.
Direction of rotation:
Clockwise seen from the drive end of the pump. Materials of construction, and of shaft seals: See Chapter 2.4.
Vibrations:
ZTN range pumps comply with VDI 2056 and ISO 5199 Class K for pumps with a driving power of up to 15 kW and Class M with a driving power of more than 15 kW
Noise levels:
The noise levels of the pump comply with the Directive 001/30 – 1992 of the EUROPUMP Commission.
The following table provides approximate values:

P (kW)
pump without motor
Note that additional noise can be generated by:
• The driver.
• A possible misalignment of the coupling.
• Pipework (note: the larger the pipe diameter, the lower the pipe noise).

Permissible branch forces and moments:
Permissible forces and moments for 1B and 2B executions. According to ISO/DIN 5199 Class II (1997) Annex B.

• Material execution 1B:

DN
flanges Fy
(N) Fz
(N) Fx
(N) F
(N) My
(Nm) Mz
(Nm) Mx
(Nm) M
(Nm)
Top branch z-Axis 32 580 725 638 1131 522 609 754 1102
40 580 725 638 1131 522 609 754 1102
50 783 957 870 1508 580 667 812 1189
65 1189 1450 1305 2291 667 754 928 1363
80 1189 1450 1305 2291 667 754 928 1363
100 1566 1943 1740 3045 725 841 1015 1508
125 2349 2900 2610 4553 1015 1189 1450 2117
150 2349 2900 2610 4553 1015 1189 1450 2117
200 3132 3886 3480 6061 1334 1537 1885 2784
End branch 50 870 783 957 1508 580 667 812 1189
65 1305 1189 1450 2291 667 754 928 1363
80 1305 1189 1450 2291 667 754 928 1363
100 1740 1566 1943 3045 725 841 1015 1508
125 2610 2349 2900 4553 1015 1189 1450 2117
150 2610 2349 2900 4553 1015 1189 1450 2117
200 3480 3132 3886 6061 1334 1537 1885 2784
250 3457 3132 3874 6055 1462 1694 2065 3799

• Material execution 2B: (Only for 200400 to 200500 pump sizes)
Multiply by  = 1,276; which is the relationship of E – modules between GS-C25 and GGG 40.3

fl DN s
ange Fy
(N) Fz
(N) Fx
(N) SF
(N) (My
Nm) (Mz
Nm) (Mx
Nm) SM
(Nm)
bTop ranch z-axis 150 5638 6960 6264 10927 2436 2854 3480 5081
200 7517 9326 8352 14546 3202 3689 4524 6682
bEnd ranch x-axis 200 8352 7517 9326 14546 3202 3689 4524 6682
250 8352 7517 9326 14546 3202 3689 4524 6682

Maximum permissible speeds:

max. speed n = 3600 rpm size max. speed n = 3000 rpm size max. speed n = 1800 rpm size max. speed n = 1500 rpm size
032125 050200 032250 040315 150315 150500
032160 065125 040250 050315 150400 200315
t = 120 °C 032200
040125
040160 065160
065200
080160 t = 120 °C 050250
065250
080250 t = 120 °C 065315
080315
100315 200250 t = 120 °C 200400
040200 080200 100250 125250
050125
050160 100160
100200 125200 150200
150250
032125 050200 040250 040315 150250 150315
032160 065125 050250 050315 150400
t = 350 °C 032200
040125
040160 065160
080200
100160 t = 350 °C 065200
065250
080160 t = 350 °C 065315
080315
100315 t = 350 °C 150500
200250
200315
040200 080250 125200 200400
050125
050160 100200
100250 125250
150200 200500

The maximum speeds result from the permissible peripheral speeds of the impellers or from the shaft load admissible at higher temperatures, respectively.

Operating range:
(Continuous operation)

Sizes
0,3 Qopt < Q < 1,1 Qopt 032125 to 080315
1502100315 500
50 to 150
0,5 Qopt < Q < 1,1 Qopt 100160 to 100250
125200 to 125250
150200
200500
0,7 Qopt < Q < 1,2 Qopt 200250 to 200400

This operating range is applicable if waterlike liquids are pumped. If liquids having distinctly different physical properties are handled, it may be necessary to narrow the permissible operating range.
See the specific performance curve for more details.

10. Connections, dimensions, sectional drawing
10.1 Connections
Connections for bearing brackets 25, 35

ufg : Grease filling connection. uio : Sealing liquid connection. uAL : Drainage for leakage. uv : Vent connection

Size ufg uv uio uAL
032125

G 1/8

G 1/8

G 1/4

G 1/4
032160
032200
032250
040125
040160
040200
040250
040315
050125
050160
050200
050250
050315
065125
065160
065200
065250
065315
080160
080200
080250
080315
100160
100200
100250
100315
125200
125250
150200
150250

Connections for bearing brackets 45

ufg : Grease filling connection. uio : Sealing liquid connection. uAL : Drainage for leakage. uv : Vent connection

Size ufg uv uio uAL
150315
150400
150500

200250
200315
200400
200500

G 1/8 G 1/8 G 1/4 G 1/4

For local contact details: www.sterlingsihi.com

In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify its products at any time without prior notice.

 (Sterling Fluid Systems BV) 2009

10.2 Table of Dimensions

ZTN 032-125 … 150-250

DN 2

size DN2 DN1 a b c f h1 h2 m1 m2 n1 n2 s1 s2 w w1 x d1 l t u
032125 32 50 80 50

15

360 112 140 100 70 190 140

M12

M12

267 105

80

24

50

27

8
032160 132 160 240 190 120
032200 160 180 137
0322501) 100 65 180 225 125 95 320 250 164
040125
40

65 80 50 112 140 100 70 210 160 105
040160 132 160 240 190 120
040200 100 160 180 265 212 140
040250 65 180 225 125 95 320 250 164
0403151) 125 18 470 225 250 345 280 340 204 100 32 80 35 10
050125
50 100 50 15 360 132 160 100 70 240 190 267 105 80 24 50 27 8
050160 160 180 265 212 130
050200 200 150
050250
65 180 225
125
95 320 250 164
0503151) 125 18 470 225 280 345 280 340 210 100 32 80 35 10
065125
65
80 100 15 360 160 180 280 212 267 140 80 24 50 27 8
065160 200 147
065200 180 225 320 250 165
100
065250 80 470 200 250 160 120 360 280 M16 340 185 32 80 35 10
065315
125 18 225 280 400 315 220
080160 80 100 65 15 360 180 225 125 95 320 250 M12 267 163 24 50 27 8
080200

470 250 345 280

340 180

32

80

35

10
080250

80

18 200 280

160

120 400 315

M16 200
080315 250 315 235
1001601) 100 125 200 280 360 280 200 140
100200 202 120
100250 140 225 400 315 212
100315 250 315 242
1252001) 125 150 140
125250 355 236 120
150200 150 200 160 100 20 280 400 200 150 550 450 M20 271 190
1502501) 500 400 273 170

1)Transnorm pump sizes, not included in DIN 24255/ EN 733. Flanges drilled according to ANSI 150 can be suplied.

Dimension table ZTN 150-315 … 200-500

size DN2 DN1 a f h1 h2 m1 m2 i l x d1 w c s1 s2 n1 n2 n3 n4 n5
1503151) 150 200 180

670 315 400 160 100 35

110

180

48

500

23

M20 M12 320 360 290 330 60
1504001) 355 450
180
120 380 420 340 380
80
1505001) 400 500 45 M16 425 460 385 420
2002501)
200
250 250 335 425 M12 340 410 300 370
2003151) 200 355 450 M16 360 420 320 380
2004001) 375 500 35 400 460 360 420
2005001) 425 560 220 160 50 475 575 425 525 100
1)Transnorm pump sizes, not included in DIN 24255/ EN 733. Flanges drilled according to ANSI 150 can be suplied.

Flange connection size acc.
to DIN EN 1092-2
PN 16 *Flange connection size
acc. to DIN EN 1092-2
PN 25
DN2/DN1 32 40 50 65 80 100 125 150 200 150 200 250
D 140 150 165 185 200 220 250 285 340 300 360 425
k 100 110 125 145 160 180 210 240 295 250 310 370
bfl
Tolerances 18 18 20 20 22 24 26 26 30 34 34 36
+4
-3 +4,5
-4
d2 x 19×4 19×4 19×4 19×4 19×8 19×8 19×8 23×8 23×1 28×8 28×12 31×12

10.3 Parts list
When ordering spare parts give the following information: position number, the complete pump designation and the serial number, which can be found on the nameplate fixed to the pump.

Pos. Nr. Description
10.20 Volute casing 16.10 Cover
18.30 Support foot 18.31 Support foot 21.00* Shaft 23.00* Impeller
32.10* Grooved ball bearing 32.11* Inclined ball bearing 33.00 Bearing bracket 36.00 Bearing cover 40.00* Gasket
40.01* Gasket 41.10 Joint 41.20* O-ring
41.24* O-ring
42.10* Radial shaft seal ring 42.13* Radial shaft seal ring 43.30* Mechanical seal 44.10 Shaft seal casing 44.11 Shaft seal casing 47.10 Sealing cover
48.50 Locating ring 50.20 Wear ring 50.60 Clamping disc

Pos. Nr. Description
52.50* Spacer 52.51* Spacer 54.51* Bush
55.00 Disc
55.01 Disc
55.02 Disc
56.00 Grub screw 63.60 Grease nipple 90.10 Hexagon screw 90.11 Hexagon screw 90.12 Hexagon screw 90.13 Hexagon screw 90.22 Stud
90.30 Screwed plug 90.31 Screwed plug 90.40 Grub screw 91.40 Allen head screw 92.00 Hexagon nut 92.01 Hexagon nut 92.02 Hexagon nut 92.20* Shaft nut
92.30* Shaft nut 93.10* Lock washer 93.11* Lock washer 93.20* Circlip 94.00* Key
94.01* Key
* Recommended spare parts

SHAFT SEAL EXECUTION “002”

SHAFT SEAL EXECUTION “GBC”

SHAFT SEAL EXECUTION “002”

SHAFT SEAL EXECUTION ”GBC”

Declaration of conformity. Example Page 1 of 1 Annex I

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

for the use in potentially explosive atmospheres of the following pumps types, manufactured by Sterling Fluid Systems (Spain), S.A. type:
ZLN, ZLK and ZLI (Industrial pumps) ULN (Self Priming Pumps)
ZTN, ZTK and ZTI (Thermal Oil Pumps) ZHN, ZDN, ZEN and ZLI (Hot Water Pumps)

These supplementary operating instructions give only general instructions for the use of pumps in conditions that need explosion protection. The operating instructions of the specific pump must be taken into consideration as well.
Contents Page 1 General objective 2
2 Safety issues 2 2.1 Identification of safety symbols in these operating instructions 2
2.2 Compliance with regulations 2
2.3 Qualification and training of personnel 3
2.4 Safety instructions for maintenance, inspection and installation work 3
3 Instructions concerning pump and accessories 3 3.1 General 3
3.2 Pump pressure containment components 3
3.3 Coupling and coupling guard 3 3.4 Belt drive 3
4 Instructions concerning installation and start-up of pump sets 3 4.1 Coupling 3
4.2 Connection to power supply 3
4.3 Earthing 4
4.4 Belt drive 4
5 Instructions concerning operation and maintenance 4 5.1 Unauthorized modes of operation 4
5.2 Explosion protection 4
5.3 Pump filled and vented 4
5.4 Marking 4
5.5 Fluid pumped 5
5.6 Checking of direction of rotation (see also pump specific operating manual) 5
5.7 Pump operating mode 5
5.8 Temperature limits 5
5.9 Maintenance 7
6 Additional instructions for couplings in ATEX pump sets 7 6.1 Limitations 7 6.2 Storage 7 6.3 Installation 7 6.4 Mounting coupling parts 8 6.5 Alignment 8 6.6 Fixing the coupling on the shaft 9 6.7 Operation 9 6.8 Maintenance 9 6.9 Figures 10

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify
its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

Pumping systems can be operated in hazardous areas. It is the obligation of the operator to define the zone and to select the pump with the correct category for this zone.
The pump installation and operation must take into account the Operating Instructions that are described in these supplementary operating instructions. They contain important information for safe and reliable pump operation in hazardous areas. This information plus all information given for all components of the system (e.g. the operating instructions for the pump) are of vital importance to avoid risks.
These supplementary operating instructions do not take into account national or local regulations; the operator must ensure that such regulations are strictly observed by all, including the personnel in charge of the installation.
For any further information or instructions exceeding the scope of this manual or in case of damage, please contact Sterling Fluid Systems nearest customer service.
2 Safety issues
These supplementary operating instructions contain fundamental information concerning all actions with pumping systems, when operated in hazardous areas like: installation, inspection, operation, monitoring and maintenance. Therefore these and all other instructions related to safety must be known and available with easy access to all personnel involved in the above stated actions.
Not only must the general safety instructions established in this chapter on “Safety issues” be complied with, but also the safety instructions outlined under specific headings as well as the safety instructions contained in the specific operating manual of the specific pump.
2.1 Identification of safety symbols in these instructions
In these supplementary operating instructions, the safety instructions related to explosion protection are marked with:

The sign

is used to highl ight saf ety instr uctions where non-compliance may pose a damage to the pump and its functions.
2.2 Compliance with regulations
It is imperative to comply with the safety instructions contained in these supplementary operating instructions, the operating instructions of the pump type concerned, the relevant national and international explosion protection regulations, health and safety regulations and the operator’s own internal work, operation and safety regulations.
Ex symbol relates to additional requirements, which must be complied with when the pump is operated zardous areas.
In addition the following must be observed:
If pumps / units are located in hazardous areas, it is imperative to make sure that the correct category ump and equipment is selected and that unauthorised modes of operation are prevented. Non- pliance may result in first: increased risk of explosion and second: the specified temperature limits might exceeded.
Non-compliance with these safety instructions may also result in the loss of any rights to claim damages.

Non-compliance may also result in hazards to persons by explosion.

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify
its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

2.3 Qualification and training of personnel
The personnel responsible for or involved in the installation, the operation, maintenance and inspection of the pump and the unit must be adequately qualified to carry out these works in hazardous areas.
The scope of responsibility and supervision of the personnel must be exactly defined by plant management. If the staff does not have the necessary knowledge, they must be trained and instructed. The pump manufacturer or supplier on behalf of the plant management may perform this task. Moreover, plant management must ensure that the contents of the operation instructions are fully understood by plant operators and other relevant personnel such as maintenance staff.

2.4 Safety instructions for maintenance, inspection and installation work
The operator is responsible to assure that all installation work, inspection, operation and maintenance must be carried out by authorized and qualified specialist personnel, which is thoroughly familiarized with the pump operating instructions and these supplementary operating instructions.
If necessary, additional explosion protection regulations must be considered.
3 Instructions concerning pump and accesories
3.1 General
Pumps and accessories for installations in hazardous areas must comply with the relevant category of mechanical and electrical equipment.
Some details are pointed out below:
3.2 Pump pressure containment components
For handling inflammable fluids, the pump pressure containment components must be made of ductile material.
3.3 Coupling and coupling guard
The accident prevention regulations require, that pump drive must not be operated without a coupling guard. If a customer specifically decides, not to include a coupling guard in our delivery, then the operator must provide such coupling guard himself. The coupling must be selected and sized in accordance with the instructions of the coupling manufacturer. It is important to make sure that the materials selected for coupling and coupling guard are non-sparking in the event of mechanical contact. Sterling Fluid Systems scope of supply meets this requirement.
In hazardous areas coupling guards must be of non-sparking material, whereby the coupling material must be considered.
3.4 Belt drive
Belts must include some electrically conductive material.
4 Instructions concerning installation and start-up of pump sets
In addition to the normal installation instructions, the specific criteria for explosion protection are listed below: 4.1 Coupling
The coupling must be installed, started-up and operated in accordance with the operating instructions of the coupling manufacturer. Misalignment of the coupling may result in inadmissible temperatures at the coupling and motor bearings. It has to be ensured that the coupling halves are correctly aligned at all times.
4.2 Connection to power supply
Only a properly trained electrician must effect connection to the power supply. The available main voltage must be checked against the data on the motor rating plate and an appropriate start-up method must be selected.

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify
its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

Sterling Fluid Systems strongly recommends using a motor protection device (motor protection switch)
In hazardous areas, compliance with national and local regulations form and additional requirement for electrical connections.
4.3 Earthing
To eliminate risks due to electrostatic charging, pump set must be earthed directly or through an earthing line.
4.4 Belt drive
Belt-driven pump sets must always be earthed. The condition of the belts must be checked regularly.

5 Instructions concerning operation and maintenance
5.1 Unauthorized modes of operation
The warranty related to the operating reliability and safety of the unit supplied is only valid if the equipment is used in accordance to its designated use as described in the following sections of this supplementary operating manual and the specific pump operating manual. The limits stated in the data sheet must not be exceeded under any circumstances.
Any operation of the pump outside the permissible operating range and any unauthorized modes of operation may result in the specific temperature limits being exceeded (see section 5.8).
5.2 Explosion protection
If pumps / units are installed in hazardous areas where compliance with EC directive 94/9/EC is required, the measures and instructions given in the following sections 5.3 to 5.9 must be carried out with no excuse, to ensure explosion protection.
5.3 Pump filled and vented
Especially dry running of a pump results in friction and non-allowed temperature rise. Therefore precautions have to be taken to prevent dry running.
It is necessary that the system of suction and discharge lines and thus the wetted pump parts including seal chamber and auxiliary systems are completely filled with fluid to be handled at all time during pump operation, so that and explosive atmosphere is prevented.
If the operator cannot warrant this condition, appropriate monitoring devices must be used.
Improper installation (e.g. vertical installation) may impair the self-venting properties of the seal chamber, so that gas bubbles may be collected in the pump and cause the mechanical seal to run dry.
High negative pressure on the suction side (e.g. due to clogged suction-side strainers or low system pressure) may result in air intake at the shaft seal forming gas bubbles in the pump. This may also cause the mechanical seal to run dry. Suitable monitoring facilities shall be installed, if necessary.
For design inherent reasons, however, it is not always possible to exclude the existence of a certain residual volume not filled with liquid after the pump has been filled prior to start of operation. However, once the motor is started up the pumping effect will immediately fill this volume with pumped fluid.

It is imperative to make sure that seal chambers and auxiliary seal systems are properly vented from air and filled with liquid.
5.4 Marking
The Ex marking on the pump only refers to the pump part, i.e. the coupling and motor must be considered separately. The coupling must have an EC Declaration of Conformity and the EC marking. The driver must be treated separately

For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify
its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

Example of marking on the pump part: CE Ex II 2 G c T1 – T5
The safety instructions published in section 5.8 must be complied with.
5.5 Fluid pumped
Abrasive particles in the fluid handled may erode the casing walls to such and extent that fluid may escape. When handling inflammable media, it has to be ensured that the fluid does not contain any abrasive particles, or that the pump is regularly checked with respect to erosion.

5.6 Checking of direction of rotation (see also pump specific operating manual)
If the explosion hazard also exists during the installation phase, the direction of rotation must never be checked by starting up the unfilled pump unit, even for a short period, to prevent temperature increases resulting form contact between rotating and stationary components. If it is possible to fill the pump, the direction of rotation must be checked with the pump / motor coupling removed.
5.7 Pump operating mode
Make sure that the pump is always started up with the suction-side shut-off valve fully open and the discharge-side shut-off valve slightly open. However, the pump can also be started up against a closed swing check valve. Only after the pump has reached full rotational speed shall the discharge-side shut-off valve be adjusted to comply with the duty point.

Pump operation with closed shut-off valves in the suction and / or discharge pipes is not permitted. In this case, there is a risk of the pump casing reaching a high surface temperature after a very short time, due to a rapid temperature rise in the pumped fluid inside the pump. Additionally, the resulting rapid pressure build-up inside the pump may cause excessive stresses on the pump materials and even cause it to burst. The minimum flows indicated in the relevant pump operating manuals refer to water and water-like liquids. Longer operation periods with these liquids and at the flow rates indicated will not cause and additional increase in the temperature on the pump surface. However, if the physical properties of the fluids handled are different from water, it is essential to check if and additional heat build-up may occur and if the minimum flow rate must therefore be increased.
The calculation formula below can be used to check if an additional heat build-up may lead to a dangerous temperature increase at the pump surface.

To = Tf + 
 = ((g * H) / (c * ))*(1 – )
c Specific heat of liquid [J / kg K]
g Acceleration due to gravity [m2/s] H Pump head [m]
Tf Temperature of pumped fluid [º C] To Temperature of casing surface [º C]
Pump efficiency [-]
Temperature difference [º C]
5.8 Temperature limits
In normal pump operation, the highest temperature is to be expected on the surface of the pump casing, at the shaft seal, at the bearing areas and at the pump shaft end in close coupled executions.
Unless the pump is equipped with an additional heating facility, the surface temperature at the pump casing will correspond to the temperature of the fluid handled, assuming that the pump surface is freely exposed to the atmosphere.

In any case, responsibility for compliance with the specified fluid temperature (operating temperature) lies with the plan operator. The maximum permissible fluid temperature depends on the temperature class to be complied with.
The following limits for the maximum permissible temperature must be observed for the individual temperature classes as per EN 13463-1 given below (temperature increase in the shaft seal area, if any, has been taken into consideration):
Temperature class Permissible Max. Permissible fluid
as per EN 13463-1: surface temperature for compliance
temperature with temperature class
T5 100 º C 80 º C T4 135 º C 115 º C T3 200 º C 180 º C T2 300 º C 280 º C
T1 450 º C Temperature limit of the pump

The permissible operating temperature of the pump in question is indicated in the technical data. If the pump is to be operated at a higher temperature, the technical data are missing or if the pump is part of a pool of pumps, the maximum permissible operating temperature must be requested from the pump manufacturer.

Because of the very close contact between pumps and motors in close coupled design (ZLK and ZLI Industrial pumps; ZTK and ZTI, Thermal Oil Pumps; and ZLI, Hot Water Pumps), there is a thermal influence between pump and motor.
Especially for motors with protection type EExe (increased safety) the possibility that the declaration of conformity losses its validity exits, as for the EC type examination an ambient temperature of 40 ºC is taken as a basis. This admissible ambient temperature could be exceeded in the area of the motor flange when pumping hot liquids.
In the event of fluid temperature above 80 ºC, the temperature category of the unit / set is determined by the pump not by the motor.
The motor is usually rated for continuous operation at the data indicated in the technical data. Frequent motor start-ups may result in increased surface temperature at the motor. Contact motor manufacturer, if necessary.
Based on ambient temperature of max. 40 ºC and assuming that the pump unit is properly serviced and operated and that the surfaces in the bearing area are freely exposed to the atmosphere, compliance with temperature class T4 is warranted for surfaces in the area of rolling element bearings.
If temperature class T5 (100 ºC) and T6 (85 ºC) have to be compliance with, special measures may have to be taken with regard to bearing temperature. In such cases and if ambient temperatures are higher, contact the manufacturer.
Operator’s errors or malfunctions may result in substantially higher temperatures. Please refer to section 5.1 in this context.
Mechanical seals may exceed the specified temperature limits if run dry. Dry running may not only result from an inadequately filled seal chamber, but also from excessive gas content in the fluid pumped. Pump operation outside the specified operating range may also result in dry running. Shaft seals shall be regularly checked for leakage.
The above stated and also stated in other paragraphs related to the mechanical seal, is also applicable for any shaft sealing execution (i.e. packing rings, lip seal rings,…)
It has to be verified, that V-rings are properly fitted to the shaft. Only proper contact should exist between the sealing lip and the shaft.

5.9 Maintenance
Only a pump set, which is properly operated and maintained in perfect technical conditions, will give safe and reliable operation. This also applies to the reliable function of the rolling element bearings whose actual lifetime largely depends on the operating mode and operating conditions.
Regular checks of the lubricant and the running noises will prevent the risk of excessive temperatures as a result of bearings running hot or defective bearing seals.
The correct function of the shat seal must be checked regularly.
Any auxiliary systems installed must be monitored, if necessary, to make sure they function correctly. Static sealing elements shall be regularly checked for leakage.
The coupling guard and any other guards of fast rotating components must be regularly checked for deformation and sufficient distance from rotating elements.
Regularly verify the correct position and the status of plastic components exposed to the atmosphere.
It is strongly recommended to draw up a maintenance schedule, which includes the above-mentioned points.

In case of repair, only original Sterling Fluid Systems spare parts must be used, which comply with the corresponding EC Directives.

6 Additional instructions for couplings in ATEX pump sets

The following instructions for couplings need especially to be followed for pump sets which are manufactured in conformity with Directive 94/9/EC for operations as category 2G equipment in hazardous areas.
6.1 Limitations
Only the coupling type BDS and HDS are released for pump sets in conformity with 94/9/EC.
These couplings are designed to be operated according to the following parameters:
– Max. 25 starts per hour.
– Daily operating cycle up to 24 h.
– Operation within the specified alignment.
– Temperature range -30ºC a +80ºC in the immediate vicinity of the coupling.
6.2 Storage
If coupling parts are stored as spare parts, the storage area must be dry and free from dust. The flexible elements must not be stored with chemicals, solvents, motor fuels, acids, etc… Furthermore they should be protected against light, in particular sunlight and bright artificial light with high ultraviolet content.

The storage area must not contain any ozone-generating equipment, e.g. fluorescent light sources, mercury vapour lamps, high voltage electrical equipment. Damp storage areas are unsuitable. Ensure that no condensation occurs. The most favourable atmospheric humidity is below 65%.
6.3 Installation
Type B and H couplings shall never be operated in pump sets category 2G.
The flexible elements are delivered in different materials and are then differently coloured or marked with stripes in different colours. Only elements of one type must be used in one coupling.
When assembling a pump set with a coupling, the fits of the bores and shafts must be checked. See table 6.C.1

Table 6.C.1 Tolerances for coupling fit

Fit Nominal diamenter toShaft e leranc Coupling
tobore e
lerant
Shaft tolerance according to DIN 748/1 Š 50 mm k6 H7
> 50 mm m6

Failure to observe these instructions may result in breakage of the coupling. Danger from flying ments! The coupling then becomes and explosion hazard.
6.4 Mounting coupling parts
Before beginning installation, shaft ends and coupling part must be carefully cleaned. Before cleaning the coupling parts with solvent the flexible elements must be removed.
If necessary, heating the coupling parts (to max 150 ºC) will facilitate fitting. With temperatures over 80 ºC the flexible elements must be removed form the coupling parts before heating.

Coupling parts must be fitted with the aid of suitable equipment to avoid damaging the shaft bearings through axial joining forces. Always use suitable lifting equipment.
Shaft ends must not project from the inner sides of the hub. Axial security is effected by means of the set screw.

Tighten the set screws with a tightening torque in accordance with the table 6.C.3.

Failure to observe these instructions may result in breakage of the coupling. Danger from flying fragments! The coupling then becomes and explosion hazard.
After fitting the coupling parts onto the shafts the flexible elements, if previously removed must be fitted. Previously heated coupling parts must make cooled down again to a temperature below +80 ºC. It must be ensured that the flexible elements are of identical size and colour or have identical marking.
Move together the pump set components to be coupled.

Danger of squeezing! 6.5 Alignment
Couplings connect shaft ends of the driver and the pump. The alignment of shaft ends needs to be adjusted
within the following tolerances.
The errors of alignment are differentiated into:
– Axial misalignment: the allowable difference between maximum and minimum axial gap S between maximum and minimum axial gap S between the two coupling halves is given Table 6.C.2.
– Angular misalignment: this can usefully be measured as the difference in the gap dimensions AS = Smax – Smin. The allowable values are given in Table 6.C.2, depending on coupling size and speed.

– Radial misalignment is the radial offset between the shaft centres. The allowable values are the same AS values like for the angular misalignment given in Table 6.C.2.
The method to adjust the alignment is:
– First correct the angular misalignment.
– Then correct the axial gap.
– Then correct the radial misalignment.
The useful tools are a feeler gauge and a ruler as shown in figure 6.C.2. Table 6.C.2 Alignment dimensions

Coup. type BDS Axial gap S
mm Angular aAnd radial misalignment
S max. in mm
at speed
750
1/min 1000
1/min 1500
1/min 2000
1/min 3000
1/min
76 2 – 4 0,25 0,2 0,2 0,15 0,15
88 2 – 4 0,25 0,2 0,2 0,15 0,15
103 2 – 4 0,25 0,25 0,2 0,2 0,15
118 2 – 4 0,3 0,25 0,2 0,2 0,15
135 2 – 4 0,3 0,25 0,25 0,2 0,15
152 2 – 4 0,35 0,3 0,25 0,2 0,2
172 2 – 6 0,4 0,35 0,3 0,25 0,2
194 2 – 6 0,4 0,35 0,3 0,25 0,2
218 2 – 6 0,45 0,4 0,3 0,3 0,2
245 2 – 6 0,5 0,4 0,35 0,3 0,25
6.6 Fixing the coupling on the shaft
For fixing the coupling parts on the shaft there are set screws, which need to be locked with the following torque depending on coupling size:
Table 6.C.3 Torque for set screws

Size 76 88 103 118 135 152
Torque Nm 4 4 4 4 8 8
Size 172 194 218 245
Torque Nm 15 25 25 25
6.7 Operation

If any irregularities are registered during operation (vibrations of noise) the pump set is to be switched off immediately. Determine the cause of the fault using the fault list in Chapter 8. This list contains possible faults, their reasons and successful actions.
If the analysis is not possible then contact the Sterling Service. 6.8 Maintenance

Regular control of the torsional backlash is necessary to prevent.
For local contact details: www.sterlingsihi.com
In the search to improve continuously its products, Sterling Fluid Systems reserves the right to modify
its products at any time without prior notice.  (Sterling Fluid Systems BV) 2009

The torsional backlash has to be measured in the following way: One coupling part is rotated against the other with no torque to a stop. Then this position of the two coupling halves is marked (se figure 6.C.3). Then the coupling parts are rotated into the other direction as far as possible without torque. The distance between both marks is the backlash measure ASb. The maximum values for this measure are given in Table 6.C.4 by coupling size. If this measure is exceeded, then the flexible elements need to be exchanged.

The flexible elements must be replaced in sets (all elements of one coupling at once, independent of the individual wear). Only identically marked flexible elements must be used. Only spare parts from the original equipment manufacturer are allowed for replacement
Table 6.C.4 Torsional backlash measure

Size 76 88 103 118 135 152 172
ASb
mm 7,0 5,0 7,0 9,0 10,5 11,5 9,0
Size 194 218 245
ASb
mm 8,0 7,0 6,5
6.9 Figures:
Figure 6.C.1 Measures for checking alignment

Smax

Smin

Figure 6.C.2 Checking of alignment Ruler

Smax

Smin
AS = Smax – Smin

S

Figure 6.C.3 Measurement of torsional backlash

Open chat
Selamat datang Di idmboiler.co.id PT Indira Dwi Mitra, Pabrikasi Steam Boiler,Thermal Oil Heater,Hot Water Boiler,Gas Oil Burners,Part & Service dll.